Connect with us

Technology

WHY FINANCIAL SERVICES COMPANIES ARE PREPARING TO TAKE THE QUANTUM LEAP

Source: Finance Derivative

Authored by Jason Hill, Reply

Financial services companies are no strangers to complex algorithms, but even today’s most sophisticated software can only analyse a fraction of available data. However, quantum computing is about to change all that. Quantum computers will far surpass the limitations of classic computers: performing complex tasks within minutes and completing actions that were once deemed impossible. So what does this mean for financial services?

Use cases in quantum

The potential impact of quantum computing can hardly be overstated. Just as the development of the microprocessor in the 1970s unlocked the power of personal computers to the average end user, and the proliferation of the Internet in the 1990s revolutionised the way the world communicates; quantum computing, with its vastly superior processing power, will have a transformative impact on virtually every industry and individual.

Jason Hill

In financial services, there are a myriad of applications where it can be applied including reinforcing cyber security, targeting investments, profiling risk, optimising portfolios and liquidity management, from context-defining indicators to collateral optimisation.

In the portfolio optimisation case for example, quantum computing could be used to limit a company’s exposure by identifying a portfolio of assets with minimal correlation between them. This is particularly useful when diversifying the portfolio of securities to reduce any risk that might impact return. Furthermore, as the size of an investment portfolio increases, so does the complexity of the computational problem. Quantum computing can quickly solve problems that would take days, months or even years on traditional computers.

Quantum will ultimately help financial institutions prepare for their future and get ahead of their competition by knowing more, more quickly. For example, Reply recently worked with a credit institution to develop a quantum computing algorithm that allowed it to optimise daily collateral costs related to over-the-counter derivatives trading. This took into account non-linearities in the model and involved a dedicated simulation-based optimisation tool to plan for multiple scenarios.

From quantum computing to predictive analytics

One particularly interesting application in quantum computing is predictive analytics which can be used to forecast future events based on past data. Quantum computing can even help users make smart assumptions about data that doesn’t exist. For example, a bank’s cash flow can be projected using the so-called the Monte Carlo method which involves getting a clear, statistical picture based on a high number of simulations. Monte Carlo simulations are a form of predictive analytics and because they require a lot of calculations (with potentially many variables), quantum can process them much faster. This is particularly useful in portfolio management as for example, it allows an analyst to determine the size of the portfolio a client would need at critical times, such as at retirement, to support their desired lifestyle.

Financial companies aren’t at a loss for historical data sources: contracts, transactions, inquiries, and claims. These are the solution to a more certain future. By learning from past knowledge companies can make future estimations with higher accuracy.

Where can we go from here?

The performance ability of quantum computers far outweighs current possibilities. The range of problems that can be addressed thanks to Quantum Computing is broad: it does not stop at combinatorial optimization but, instead, crosses into other areas such as machine learning and quantum security. Quantum neural networks and quantum internet networks are just two of the more interesting ones.

Quantum machine learning (QML), makes the most of the advantages of two current themes: quantum computing and machine learning. Although QML is still in its early stages, it nevertheless offers a whole new world of opportunities, combining the new knowledge provided by machine learning with the accelerated calculation potential and the enhanced accuracy of quantum calculations.

It is not a trade secret to know that today, all major financial services companies have departments focused on Big so they can benefit from the huge amount of data collected over the decades. And with the increase in remote cloud computing power, much more complex prediction models can be employed.

The race is now on for the companies that provide quantum computing solutions to fully realise their potential but once those solutions are in place, they will have a huge advantage over their competitors. It makes sense for them to partner early with companies who have existing use cases in quantum computing. Because the companies that adopt Big Data and Machine Learning processes will build more commercially efficient offerings that will have customers lining up.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Business

How 5G is enhancing communication in critical sectors

Luke Wilkinson, MD, Mobile Tornado

In critical sectors where high-stakes situations are common, effective communication is non-negotiable. Whether it’s first responders dealing with a crisis or a construction team coordinating a complex project, the ability to share information quickly and reliably can mean the difference between success and failure.

Long-distance communication became feasible in the 1950s when wireless network connectivity was first utilised in mobile radio-telephone systems, often using push-to-talk (PTT) technology. As private companies invested in cellular infrastructure, the networks developed and data speeds improved increasingly. Each major leap forward in mobile network capabilities was classed as a different generation and thus 1G, 2G, 3G, 4G, and now 5G were born.

5G is the fifth generation of wireless technology and has been gradually rolled out since 2019 when the first commercial 5G network was launched. Since then, the deployment of 5G infrastructure has been steadily increasing, with more and more countries and regions around the world adopting this cutting-edge technology.

Its rollout has been particularly significant for critical sectors that rely heavily on push-to-talk over cellular (PTToC) solutions. With 5G, PTToC communications can be carried out with higher bandwidth and speed, resulting in clearer and more seamless conversations, helping to mitigate risks in difficult scenarios within critical sectors.

How is 5G benefiting businesses?

According to Statista, by 2030, half of all connections worldwide are predicted to use 5G technology, increasing from one-tenth in 2022. This showcases the rapid pace at which 5G is becoming the standard in global communication infrastructure.

But what does this mean for businesses? Two of the key improvements under 5G are improved bandwidth and download speeds, facilitating faster and more reliable communication within teams. PTToC solutions can harness the capabilities of 5G and bring the benefits to critical sectors that need it most, whether that’s in public safety, security, or logistics: the use cases are infinite. For example, this could be leveraging 5G’s increased bandwidth to enable larger group calls and screen sharing for effective communication.

Communication between workers in critical industries can be difficult, as often the workforces are made up of lone workers or small groups of individuals in remote locations. PTToC is indispensable in these scenarios for producing quick and secure communication, as well as additional features including real-time location information and the ability to send SOS alerts. PTToC with 5G works effectively in critical sectors, as 5G is designed to be compatible with various network conditions, including 2G and 3G. This ensures that communication remains reliable and efficient even in countries or areas where 5G infrastructure is not fully deployed to keep remote, lone workers safe and secure.

The impact of 5G on critical communications

The International Telecommunication Union has reported that 95 percent of the world’s population can access a mobile broadband network. This opens up a world of new possibilities for PTToC, particularly when harnessing new capabilities for 5G as it’s being rolled out.

One of the most significant improvements brought by 5G is within video communications, which most PTToC solutions now offer. Faster speeds, higher bandwidth, and lower latency enhance the stability and quality of video calls, which are crucial in critical sectors. After all, in industries like public safety, construction, and logistics, the importance of visual information for effective decision-making and situational awareness cannot be overstated. 5G enables the real-time transmission of high-quality video, allowing for effective coordination and response strategies, ultimately improving operational outcomes and safety measures.

Challenges in Adopting 5G in Critical Sectors

While the benefits of 5G are undeniable, the industry faces some challenges in its widespread adoption. Network coverage and interoperability are two key concerns that need to be addressed to ensure communication can keep improving in critical sectors.

According to the International Telecommunication Union, older-generation networks are being phased out in many countries to allow for collaborative 5G standards development across industries. Yet, particularly in lower-income countries in Sub-Saharan Africa, Latin America, and Asia-Pacific, there is a need for infrastructure upgrades and investment to support 5G connectivity. The potential barriers to adoption, including device accessibility, the expense of deploying the new networks, and regulatory issues, must be carefully navigated to help countries make the most out of 5G capabilities within critical sectors and beyond.

However, the rollout of 5G does cause data security concerns for mission-critical communications and operations, as mobile networks present an expanded attack surface. Nonetheless, IT professionals, including PTToC developers, have the means to safeguard remote and lone workers and shield corporate and employee data. Encryption, authentication, remote access, and offline functionality are vital attributes that tackle emerging data threats both on devices and during transmission. Deploying this multi-tiered strategy alongside regular updates substantially diminishes the vulnerabilities associated with exploiting 5G mobile networks and devices within critical sectors.

While the challenges faced by the industry must be addressed, the potential benefits of 5G in enhancing communication and collaboration are undeniable. As the rollout of 5G continues to gain momentum, the benefits of this cutting-edge technology in enhancing communication in critical sectors are becoming increasingly evident. The faster, more reliable, and efficient communication enabled by 5G is crucial for industries that rely on real-time information exchange and decision-making.

Looking ahead, the potential for further advancements and increased adoption of 5G in critical sectors is truly exciting. As the industry continues to address the challenges faced, such as network coverage, interoperability, and data security concerns, we can expect to see even greater integration of this technology across a wide range of mission-critical applications for critical sectors.

Continue Reading

Auto

Could electric vehicles be the answer to energy flexibility?

Rolf Bienert, Managing and Technical Director, OpenADR Alliance

Last year, what was the Department for Business, Energy & Industrial Strategy and Ofgem published its Electric Vehicle Smart Charging Action plans to unlock the power of electric vehicle (EV) charging. Owners would have the opportunity to charge their vehicles while powering their homes with excess electricity stored in their car.

Known as vehicle to grid (V2G) or vehicle to everything (V2X), it is the communication between a vehicle and another entity. This could be the transfer of electricity stored in an EV to the home, the grid, or to other destinations. V2X requires bi-directional energy flow from the charger to the vehicle and bi- or unidirectional flow from the charger to the destination, depending on how it is being used.

While there are V2X pilots already out there, it’s considered an emerging technology. The Government is backing it with its V2X Innovation Programme with the aim of addressing barriers to enabling energy flexibility from EV charging. Phase 1 will support development of V2X bi-directional charging prototype hardware, software or business models, while phase 2 will support small scale V2X demonstrations.

The programme is part of the Flexibility Innovation Programme which looks to enable large-scale widespread electricity system flexibility through smart, flexible, secure, and accessible technologies – and will fund innovation across a range of key smart energy applications.

As part of the initiative, the Government will also fund Demand Side Response (DSR) projects activated through both the Innovation Programme and its Interoperable Demand Side Response Programme (IDSR) designed to support innovation and design of IDSR systems. DSR and energy flexibility is becoming increasingly important as demand for energy grows.

The EV potential

EVs offer a potential energy resource, especially at peak times when the electricity grid is under pressure. Designed to power cars weighing two tonnes or more, EV batteries are large, especially when compared to other potential energy resources.

While a typical solar system for the home is around 10kWh, electric car batteries range from 30kWh or more. A Jaguar i-Pace is 85kWh while the Tesla model S has a 100kWh battery, which offers a much larger resource. This means that a fully powered EV could support an average home for several days.

But to make this a reality the technology needs to be in place first to ensure there is a stable, reliable and secure supply of power. Most EV charging systems are already connected via apps and control platforms with pre-set systems, so easy to access and easy to use. But, owners will need to factor in possible additional hardware costs, including invertors for charging and discharging the power.

The vehicle owner must also have control over what they want to do. For example, how much of the charge from the car battery they want to make available to the grid and how much they want to leave in the vehicle.

The concept of bi-directional charging means that vehicles need to be designed with bi-directional power flow in mind and Electric Vehicle Supply Equipment will have to be upgraded as Electric Vehicle Power Exchange Equipment (EVPE).

Critical success factors

Open standards will be also critical to the success of this opportunity, and to ensure the charging infrastructure for V2X and V2G use cases is fit for purpose.

There are also lifecycle implications for the battery that need to be addressed as bi-directional charging can lead to degradation and shortening of battery life. Typically EVs are sold with an eight-year battery life, but this depends on the model, so drivers might be reluctant to add extra wear and tear, or pay for new batteries before time.

There is also the question of power quality. With more and more high-powered invertors pushing power into the grid, it could lead to questions about power quality that is not up to standard, and that may require periodic grid code adjustments.

But before this becomes reality, it has to be something that EV owners want. The industry is looking to educate users about the benefits and opportunities of V2X, but is it enough? We need a unified message, from automotive companies and OEMs, to government, and a concerted effort to promote new smart energy initiatives.

While plans are not yet agreed with regards to a ban on the sale on new petrol and diesel vehicles, figures from the IEA show that by 2035, one in four vehicles on the road will be electric. So, it’s time to raise awareness the opportunities of these programs.

With trials already happening in the UK, US, and other markets, I’m optimistic that it could become a disruptor market for this technology.

Continue Reading

Auto

Navigating the commercial vehicle sustainability conundrum

By David Wilson, Business Development Advisor, NEOL Copper Technologies Ltd.

As road transport companies implement their environmental, social, and governance (ESG) strategies to ensure they are contributing positively to the planet and society while also being run ethically and transparently, they are faced with a conundrum.

With increasing regulatory and social scrutiny on carbon emissions, the transportation industry which is the second largest (20%) contributor to carbon emissions worldwide, faces growing pressure to meet the near-term net-zero targets, requiring an immediate move to being more sustainable.

The industry has recently undergone significant changes that have impacted the cost of running a successful business. Factors such as high fuel costs, increased labour expenses, and maintenance costs, as well as excessive costs to renew the fleet, have all contributed to this. Additionally, businesses now need to consider how to incorporate the future of electric and autonomous vehicles.

The future of electric vehicles

ESG strategies such as investing in fuel-efficient, low-emission technologies and adopting alternative sustainable fuel sources are essential to reduce carbon emissions, air pollution, and preserve natural resources, while protecting the industry’s long-term viability.

In order to make the industry more sustainable electric trucks will need to play a significant role. The migration to electric trucks is also an option for the fleet manager but there is presently a narrow choice of vehicles, an associated high procurement or lease cost, and a lack of public charging infrastructure.

Most commercial vehicle OEMs (original equipment manufacturers) now offer a range of electric trucks that are specifically designed for zero-emission deliveries. However, the use of heavy-duty electric trucks for long-range transport is not feasible yet, mainly because the batteries and charging power are insufficient. The large-scale adoption of electric trucks is going to take time, and it may not be until 2035 – emphasizing that the electrification of the trucking industry is around 10 years behind passenger cars in terms of electrification.

Transitioning away from fossil fuel is a complex challenge for fleet managers. It will take time for a complete shift of the 600,000+ heavy good vehicles currently navigating the UK roads to electric power. To address the issue promptly and enhance the fuel efficiency and sustainability of the current fleet, proactive measures are imperative to optimise their performance and curtail emissions immediately.

Addressing the sustainability conundrum

The vast majority of today’s commercial vehicles on the road today are powered by internal combustion engines (ICE) that run on diesel fuel. Since the first introduction of European exhaust emission standards in 1993, more stringent guidelines have been released every four to five years to reduce and eliminate harmful pollutants such as carbon dioxide, nitrogen oxide, hydrocarbons, and particulate matter from new vehicles sold in the EU.

 To meet the latest Euro VI (2015) emission standard, trucks are now typically equipped with diesel particulate filters (DPF) to capture particulate matter and lubricant ash, and selective catalytic reduction (SCR) technology to convert harmful nitrogen oxides to nitrogen and water, and exhaust gas recirculation (EGR) technology to lower the combustion temperature, reduce nitrogen oxides, and improve engine efficiency.

Euro VI engines are advanced and highly sophisticated systems that offer dependable and efficient performance. Together with the correct low-SAPS (sulphated ash, phosphorous, and sulphur) and low viscosity e.g. SAE 5W-30 engine lubricant, the fleet manager will benefit from reduced fuel consumption and warranted protection of the engine and exhaust aftertreatment devices (ATD).

As engine hardware has advanced, so has the lubricant technology. However, even with the latest low-viscosity oils, levels of fuel saving at 1-1.5% (compared to higher-viscosity oils) have not reached its full potential. Moreover, the continued use of metal-containing detergents and ZDDP (zinc dithiophosphate) antiwear components risk negatively impacting the performance and efficiency of the DPF, as well as the precious metal catalysts & sensors in the SCR units. This can lead to unplanned service and replacement of one or more of the ATDs, causing costly downtime for fleet managers.

 Euro 7 emissions regulations will be implemented in a few years, and it will require ATDs to perform as new for 200,000 km or 10 years. Therefore, the lubricant industry is facing a new challenge of lowering the levels   in engine lubricants even further.

Reducing unexpected downtime with technical lubricants

The fleet manager has access to high-quality diesel engines and lubricant technology, but they are concerned about unplanned mechanical issues due to the wear and tear of components from extended use. Additionally, the blockage of DPFs (which creates backpressure and increases fuel consumption) and the possible failure of sensors may lead to faults being registered on the truck’s OBD (on-board diagnostics) computer systems, still causing great concern for managers as they strive for maximum productivity and profitability.

Whilst the use of fossil fuels will remain crucial to power heavy-duty diesel engines, we must wait for further advancements in electrification. However, we can improve the lubricants currently being used to make commercial vehicles more efficient, with lower emissions and greater fuel economy. By doing this, we can reduce unwanted unplanned downtime for repairs or component replacements.

It is easy to see the clear link between reducing wear to increase the longevity of your machine assets. Additionally, by reducing friction, we can improve fuel savings which helps to increase efficiency, all essential steps towards acting more sustainably and making changes for a better future.

Continue Reading

Copyright © 2021 Futures Parity.