Technology
FUTURE-PROOFING THE WORKFORCE IN THE FS SECTOR: HOW TECHNOLOGY CAN HELP

Source: Finance Derivative
Clinton Thomas, Enterprise Sales Director, Financial Services, LHH
The rate of change in our world continues to gather at pace and never more so in 2021. In the past decade alone the pace of digitalisation and automation has had a massive impact on our everyday lives, including how we consume entertainment, interact with friends and family and how we conduct our financial affairs. You’d be hard pressed to find an industry or sector that has not undergone a paradigm shift thanks to technology.
These changes have also had a fundamental impact on businesses and the world of work. In some instances it has created new companies, sectors and in turn job opportunities. On the other hand it has created a demand for a new set of skills that can be hard to fill, and has ultimately meant that some roles have become redundant or are no longer seen as mission critical.
It’s easy to understand where these fears and negative headlines about automation stem from. It doesn’t help when there is a constant stream of sensationalist media headlines, and Hollywood depictions of a robo-takeover. However whenever jobs or tasks are automated or augmented by new technology this doesn’t necessarily have to result in mass lay-offs or workforce reduction. New skills are also required to support this shift and business leaders should seize the opportunity to enhance careers, protect employees and shape the future of work in a way that benefits all. Changes in technology, longevity, work practices, and business models have also created a demand for continuous, lifelong development and this can bring significant value to your workforce.
No organisation is future-proof. The past year alone has taught us that, and the dynamic forces that can have an impact can occur slowly over time or in a blink of an eye. However, the organisations best placed to evolve and survive in tomorrow’s world will be those that have an ongoing strategy to future proofing of their workforce; whether that’s investing in upskilling, reskilling or even making plans for redeployment.
Given the increase in pace and scope of planned and unforeseen changes happening globally it’s now vitally important that companies rethink traditional restructuring and recruiting practices and take steps toward the socially responsible approach of investing in upskilling and reskilling for their staff. This will ultimately lead to a better and faster return than simultaneously laying people off and hiring external talent.
However, this is easier said than done. Firstly, it requires businesses to have a holistic view of their workforce and be able to identify what skills are already present within the organisation, where the gaps lie, who the best candidates for upskilling are and precisely what skills they will need. Of course, even having this oversight will mean nothing without buy-in from the top. Having a CEO or at least several champions on the board who not only believe that people can adapt and learn new skills, but also see the value in doing so, will be vital.
It’s at this juncture that technology and AI can be a force for good when it comes to planning for the evolution of the workforce. Businesses will not only need access to vast amount of data, but they’ll also need the capabilities to turn this data into insight and predictive analytics capable of scenario planning. Having these capabilities, and the data spelled out in black and white will also help with overcoming any aforementioned resistance from the C-suite.
A great example of a company doing just that is Faethm, an AI platform that predicts the workforce impact of dynamic forces such as AI, COVID-19 and robotics on current and future jobs. A platform such as Faethm interprets company–specific data to forecast and scenario plan around strategic, technological, and people impacts so that business leaders can structure, size, and equip their workforces for future opportunities. Platforms such as this help facilitate internal hiring by suggesting novel transition opportunities based on related skills and support short-transition pathways for hard to fill roles by sourcing from the external market.
Having access to predictive modelling capabilities enables forward-looking analytics that indicate which jobs need reskilling versus upskilling, which new jobs may need to be added to the workforce, and the exact skill pathways that can move internal people or external hires to more sustainable future career pathways. The capability also enables data-driven decisions around diversity equity and inclusion categories like gender and age by showing impacts of circumstances on these protected categories of people.
Being able to couple this insight with a holistic view of the current workforce presents businesses with a great opportunity to identify and get ahead of the impact that automation, AI, and other forces will have on their workforce, and to use real data and facts to support decisions and strategic investments in upskilling, reskilling and redeployment.
Has automation and other factors presented businesses with a huge challenge? Of course. However with any challenge comes an even bigger opportunity. It will be the businesses that are able to use technology in order to support the evolution of the workforce that will be able to best withstand the ever changing world of work.
You may like
Business
Hype, Hysteria & Hope: AI’s Evolutionary Journey and What it Means for Financial Services

Source: Finance Derivative
Written by Gabriel Hopkins, Chief Product Officer at Ripjar
Almost a year to the day since ChatGPT launched, the hype, hysteria, and hope around the technology shows little signs of abating. In recent weeks OpenAI chief Sam Altman was removed from his position, only to return some days later. Rishi Sunak hosted world leaders at the UK’s AI Safety Summit, interviewing the likes of Elon Musk in front of an assembly of world leaders and tech entrepreneurs. While behind the scenes, AI researchers are rumoured to be close to even more breakthroughs within weeks.
What does it all mean for those industries that want to benefit from AI but are unsure of the risks?
It’s possible that some forms of machine learning – what we used to call AI – have been around for a century. Since the early 1990s, those tools have been a key operational element of some banking, government, and corporate processes, while being notably absent from others.
So why the uneven adoption? Generally, that has been related to risk. For instance, AI tools are great for tasks like fraud detection. It’s a well-established that an algorithm can do things that analysts simply can’t by reviewing vast swathes of data in milliseconds. And that has become the norm, particularly because it is not essential to understand each and every decision in detail.
Other processes have been more resistant to change. Usually, that’s not because an algorithm couldn’t do better, but rather because – in areas such as credit scoring or money laundering detection – the potential for unexpected biases to creep in is unacceptable. That is particularly acute in credit scoring when a loan or mortgage can be declined due to non-financial characteristics.
While the adoption of older AI techniques has been progressing year after year, the arrival of Generative AI, characterised by ChatGPT, has changed everything. The potential for the new models – both good and bad – is huge, and commentary has divided accordingly. What is clear is that no organisation wants to miss out on the upside. Despite the talk about Generative and Frontier models, 2023 has been brimming with excitement about the revolution ahead.
Two Objectives
A primary use case for AI in the financial crime space is to detect and prevent fraudulent and criminal activity. Efforts are generally concentrated around two similar but different objectives. These are thwarting fraudulent activity – stopping you or your relative from getting defrauded – and adhering to existing regulatory guidelines to support anti-money laundering (AML), and combatting the financing of terrorism (CFT).
Historically, AI deployment in the AML and CFT areas has faced concerns about potentially overlooking critical instances compared to traditional rule-based methods. Within the past decade, and other regulators initiated a shift by encouraging innovation to help with AML and CFT cases. Despite the use of machine learning models in fraud prevention over the past decades, adoption in AML/CFT has been much slower with a prevalence for headlines and predications over actual action. The advent of Generative AI looks likely to change that equation dramatically.
One bright spot for AI in compliance over the last 5 years, has been in customer and counterparty screening, particularly when it comes to the vast quantities of data involved in high-quality Adverse Media (aka Negative News) screening where organisations look for the early signs of risk in the news media to protect themselves from potential issues.
The nature of high-volume screening against billions of unstructured documents has meant that the advantages of machine learning and artificial intelligence far outweigh the risks and enable organisations to undertake checks which would simply not be possible otherwise.
Now banks and other organisations want to go a stage further. As Generation AI models start to approach AGI (Artificial General Intelligence) where they can routinely outperform human analysts, the question is when, and not if, they can use the technology to better support decisions and potentially even make the decisions unilaterally.
AI Safety in Compliance
The 2023 AI Safety Summit was a significant milestone in acknowledging the importance of AI. The Summit resulted in 28 countries signing a declaration to continue meetings to address AI risks. The event led to the inauguration of the AI Safety Institute, which will contribute to future research and collaboration to ensure its safety.
Though there are advantages to having an international focus on the AI conversation, the GPT transformer models were the primary focus areas during the Summit. This poses a risk of oversimplifying or confusing the broader AI spectrum for unaccustomed individuals. There is a broad range of AI technologies with hugely varying characteristics. Regulators and others need to understand that complexity. Banks, government agencies, and global companies must exert a thoughtful approach to AI utilisation. They must emphasise its safe, careful, and explainable use when leveraged inside and outside of compliance frameworks.
The Road Ahead
The compliance landscape demands a review of standards for responsible AI use. It is essential to establish best practices and clear objectives to help steer organisations away from hastily assembled AI solutions that compromise accuracy. Accuracy, reliability, and innovation are equally important to mitigate fabrication or potential misinformation.
Within the banking sector, AI is being used to support compliance analysts already struggling with time constraints and growing regulatory responsibilities. AI can significantly aid teams by automating mundane tasks, augmenting decision-making processes, and enhancing fraud detection.
The UK can benefit from the latest opportunity. We should cultivate an innovation ecosystem with is receptive to AI innovation across fintech, regtech, and beyond. Clarity from government and thought leaders on AI tailored to practical implementations in the industry is key. We must also be open to welcoming new graduates from the growing global talent pool for AI to fortify the country’s position in pioneering AI-driven solutions and integrating them seamlessly. Amid industry change, prioritising and backing responsible AI deployment is crucial for the successful ongoing battle against all aspects of financial crime.
Business
Using AI to support positive outcomes in alternative provision

By Fleur Sexton
Fleur Sexton, Deputy Lieutenant West Midlands and CEO of dynamic training provider, PET-Xi, with a reputation for success with the hardest to reach,
discusses using AI to support excluded pupils in alternative provision (AP)
Exclusion from school is often life-changing for the majority of vulnerable and disadvantaged young people who enter alternative provision (AP). Many face a bleak future, with just 4% of excluded pupils achieving a pass in English and maths GCSEs, and 50% becoming ‘not in education, employment or training’ (NEET) post-16.
Often labelled ‘the pipeline to prison’, statistics gathered from prison inmates are undeniably convincing: 42% of prisoners were expelled or permanently excluded from school; 59% truanted; 47% of those entering prison have no school qualifications. With a prison service already in crisis, providing children with the ‘right support, right place, right time’, is not just an ethical response, it makes sound financial sense. Let’s invest in education, rather than incarceration.
‘Persistent disruptive behaviour’ – the most commonly cited reason for temporary or permanent exclusion from mainstream education – often results from unmet or undiagnosed special educational needs (SEN) or social, emotional and mental health (SEMH) needs. These pupils find themselves unable to cope in a mainstream environment, which impacts their mental health and personal wellbeing, and their abilities to engage in a positive way with the curriculum and the challenges of school routine. A multitude of factors all adding to their feelings of frustration and failure.
Between 2021/22 and 2022/23, councils across the country recorded a 61% rise in school exclusions, with overall exclusion figures rising by 50% compared to 2018/19. The latest statistics from the Department for Education (DfE), show pupils with autism in England are nearly three times as likely to be suspended than their neurotypical peers. With 82% of young people in state-funded alternative provision (AP) with identified special educational needs (SEN) and social emotional and mental health (SEMH) needs, for many it is their last chance of gaining an education that is every child’s right.
The Department for Education’s (DfE) SEND and AP Improvement Plan (March 2023).reported, ‘82% of children and young people in state-place funded alternative provision have identified special educational needs (SEN) 2, and it (AP) is increasingly being used to supplement local SEND systems…’
Some pupils on waiting lists for AP placements have access to online lessons or tutors, others are simply at home, and not receiving an education. In oversubscribed AP settings, class sizes have had to be increased to accommodate demand, raising the pupil:teacher ratio, and decreasing the levels of support individuals receive. Other unregulated settings provide questionable educational advantage to attendees.
AI can help redress the balance and help provide effective AP. The first challenge for teachers in AP is to engage these young people back into learning. If the content of the curriculum used holds no relevance for a child already struggling to learn, the task becomes even more difficult. As adults we rarely engage with subjects that do not hold our interest – but often expect children to do so.
Using context that pupils recognise and relate to – making learning integral to the real world and more specifically, to their reality, provides a way in. A persuasive essay about school uniforms, may fire the debate for a successful learner, but it is probably not going to be a hot topic for a child struggling with a chaotic or dysfunctional home life. If that child is dealing with high levels of adversity – being a carer for a relative, keeping the household going, dealing with pressure to join local gangs, being coerced into couriering drugs and weapons around the neighbourhood – school uniform does not hold sway. It has little connection to their life.
Asking the group about the subjects they feel strongly about, or responding to local news stories from their neighbourhoods, and using these to create tasks, will provide a more enticing hook to pique their interest. After all, in many situations, the subject of a task is just the ‘hanger’ for the skills they need to learn – in this case, the elements of creating a persuasive piece, communicating perspectives and points of view.
Using AI, teachers have the capacity to provide this individualised content and personalised instruction and feedback, supporting learners by addressing their needs and ‘scaffolding’ their learning through adaptive teaching.
If the learner is having difficulty grasping a concept – especially an abstract one – AI can quickly produce several relevant analogies to help illustrate and explain. It can also be used to develop interactive learning modules, so the learner has more control and ownership over their learning. When engaged with their learning, pupils begin to build skills, increasing their confidence and commitment.
Identifying and discussing these skills and attitudes towards learning, with the pupil reflecting on how they learn and the ways they learn best, also gives them more agency and autonomy, thinking metacognitively.
Gaps in learning are often the cause of confusion, misunderstandings and misconceptions. If a child has been absent from school they may miss crucial concepts that form the building blocks to more complex ideas later in their school career. Without providing the foundations by filling in these gaps and unravelling the misconceptions, new learning may literally be impossible for them to understand, increasing frustration and feelings of failure. AI can help identify those gaps, scaffold learning and build understanding.
AI is by no means a replacement for teachers or teaching assistants, it is purely additional support. Coupled with approaches that promote engagement with learning, AI can enable these disadvantaged young people to access an education previously denied them.
According to the DfE, ‘All children are entitled to receive a world-class education that allows them to reach their potential and live a fulfilled life, regardless of their background.’ AI can help support the most disadvantaged young people towards gaining the education they deserve, and creating a pathway towards educational and social equity.
Business
How collaborative robots can support productivity for 2024

By Stacey Moser, Chief Commercial Officer, Universal Robots
The past year has been no easy feat for businesses, with an unpredictable global economy hitting manufacturers particularly hard. As we soon move into 2024, there are no signs of this relenting, with the sector recording it’s worst performance in the UK since the 1980s. Simultaneously, the manufacturing industry is battling 74,000 unfilled vacancies, creating a £6.5 billion economic shortfall which is hindering the ability of companies to fight back.
Increasing productivity will be a key focus in the pursuit of profitability for 2024. Accelerating adoption of automation within the manufacturing process offers a solution, with one study suggesting that automation has the potential to contribute $15 trillion USD to the global economy by 2030. However, many businesses at this time do not have the funds or resources to adopt large, expensive industrial robots.
Enter collaborative robots (cobots), lightweight robotic arms that can automate repetitive tasks usually requiring the skills and manpower of human workers. Compatible with traditional industrial robots commonly employed by manufacturers, cobots work alongside humans to offer a wide range of benefits, all underpinned by the ability to improve productivity, as well as assure staff safety, and improve worker wellbeing.
Reimagining production lines for 2024
Due to the nature of the industry, manufacturing workers often face so-called dull, dirty, dangerous jobs. For example, palletisation – the process of stacking, loading and securing goods onto pallets – has traditionally been a manual operation that requires staff to perform strenuous tasks repetitively. Long term, this can cause issues for employees such as musculoskeletal damage, as well as mental fatigue. As to the factory output, goods of inconsistent quality subsequently become more commonplace.
Working alongside humans, cobots can take on these undesirable tasks, preventing staff injuries while improving manufacturing quality as human error is reduced. With minimal human effort necessary to operate cobots, these autonomous colleagues can help mitigate the labour shortage issue that is currently leaving many manufacturers vulnerable. Cobots enable workers to be more productive as they focus on more valuable tasks that require more cognition, dexterity and reason, in turn unlocking further business value.
As employees take on more rewarding work, job satisfaction naturally improves. In a sector that faces labour gaps, this can go far in improving employee retention. Prospective workers who may have previously been drawn away from the manufacturing industry by the necessity of performing risky and monotonous tasks, may now see a different future ahead, where the prospect of using modern collaborative technologies excites and enthuses. Reducing turnover of employees and creating a stable pipeline of future talent also ensures manufacturers can not only maintain, but increase productivity, as another year of global economic volatility approaches.
Reducing gaps between competitors
With the current cost of living crisis projected to persist through 2024, consumer behaviour is becoming increasingly unpredictable. Cobots provide the flexibility to adapt to whatever circumstances manufacturers find themselves in, whether production must be scaled up or down, or an expansion into new markets is required. Those that cannot swiftly adapt, risk being left behind. Automation therefore becomes a necessity for manufacturers if they want to keep up with the competition.
Not only can cobots provide flexibility in scaling the size of production, but from palletisation and machine tending, to quality inspection, cobots can perform any task without a need for rest. If necessary, cobots can be programmed and redeployed to perform multiple tasks and can switch between these with ease. By eliminating potential pain points between different functions, cobots can slash factory downtime, improving productivity across the board.
With less human labour required to man machinery, the possibility of longer machine tending shifts is unlocked. This could mean the development of 24/7 factories, with downtime kept to a bare minimum. Manufacturers could see goods produced and out of the door faster than ever before, a colossal productivity boost to consider as 2024 approaches.
Challenging current misconceptions
Despite cobots being widely available to manufacturers of all sizes, these modern automation solutions have yet to be considered a possibility by many. Research shows that the biggest hurdles to implementing automation are capital cost and lack of internal knowledge and experience with the technology. However, on the cost issue, it’s been proven that cobots can achieve return on investment (ROI) in as little as 12 months.
A common myth is that cobots are difficult to implement or use. However, the technology is designed specifically with an approachable user interface, meaning employees do not require specialist expertise to operate or interact. Meanwhile, software designed for use alongside cobots, such as Universal Robots’ PolyScope, means that programming cobots to complete tasks becomes intuitive. Modern cobots – such as the UR20 – are lightweight and have a small footprint, eliminating common issues around a lack of factory floor space too.
Finally, the advent of AI and automation tools such as Chat-GPT has fuelled fears that robots may soon takeover human jobs. Manufacturers who fear backlash may be hesitant to begin deploying and reaping the benefits of collaborative automation. It is important to remember that cobots are designed to work alongside humans, not replace them. Using cobots on a factory floor for example, allows employees to work with robots, not like them. As manufacturers look to improve business resilience in 2024, welcoming cobots into the workforce can also facilitate massive productivity gains.
Forecasting for the year ahead
As manufacturers carefully consider budgets for 2024, automation and cobot technologies should be at the very top of the list. Deployment of these technologies is now essential for increasing productivity, quality and efficiency. Organisations that hesitate to invest today risk losing hard-gained momentum to more innovative competitors.
The future of manufacturing is here. And belongs to those who will innovate and automate.

Embedded Finance: The Opportunity Ahead

Hype, Hysteria & Hope: AI’s Evolutionary Journey and What it Means for Financial Services

Using AI to support positive outcomes in alternative provision

The Sustainability Carrot Could be More Powerful Than the Stick!

Hybrid cloud adoption: why vendors are making the switch in 2022 and why you should too
