Connect with us

Auto

GM, Ford to settle suit over use of ‘BlueCruise’ name for hands-free driving

Source: Reuters

WASHINGTON, Oct 4 (Reuters) – General Motors Co (GM.N) and Ford Motor Co (F.N) have agreed to settle a legal battle over the latter’s use of the name “BlueCruise” to market its hands-free driving technology.

In a notice filed in court late on Friday, the two automakers said they are in the “process of settling all claims and counterclaims at issue.” A judge agreed to dismiss the suit on condition the automakers finalize a settlement within 60 days. No details were released.

A Ford spokesman said the settlement has not been finalized but said the No. 2 U.S. automaker will “continue to use the BlueCruise name, as we do today for F-150 and Mustang Mach-E and next for the 2022 Expedition.”

GM said both automakers “have resolved the case and related proceedings amicably. At this time, we have no further comment.”

In July, GM and its Cruise robo-taxi subsidiary filed a lawsuit to stop Ford from using the name BlueCruise. GM said in July the automakers had held “protracted discussions” over the matter but failed to resolve it.

“Ford knew what it was doing,” GM said in the lawsuit. “Ford’s decision to rebrand by using a core mark used by GM and Cruise will inevitably cause confusion.”

GM announced in 2012 it would use the name Super Cruise for its hands-free driver assistance technology, and has been marketing the technology using that name since 2017.

Ford previously called the lawsuit, filed in federal court in California, “meritless and frivolous,” saying “drivers for decades have understood what cruise control is, every automaker offers it, and ‘cruise’ is common shorthand for the capability.

Automakers are racing to deploy technology to enable drivers to take their hands off the steering wheel in traffic jams or on highways. The so-called Advanced Driver Assistance Systems, such as Tesla Inc’s (TSLA.O) semi-automated Autopilot technology, are not supposed to allow drivers to disengage fully from driving for extended periods.

Automakers have used the word “cruise” for decades to describe systems that allow drivers to set a speed the car will maintain, usually in highway driving.

GM’s majority-owned Cruise self-driving vehicle unit has been operating since 2013.

Ford announced it would use the name BlueCruise for its hands-free driving technology in April this year. read more

Reporting by David Shepardson; Editing by Dan Grebler

Our Standards: The Thomson Reuters Trust Principles.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Auto

Addressing the ongoing global pilot shortage issue

Source: Finance Derivative

By Bhanu Choudhrie, Founder of Alpha Aviation

The Covid-19 pandemic brought the aviation industry to a halt, causing vast market disruption and putting the future of many key players at risk. Now, just as airlines were getting back on track, staffing shortages are causing new complications – and part of this issue is a growing pilot recruitment problem.

So, where does the sector go from here and what steps need to be taken to mitigate pilot shortages?

The root of the issue

Even before the pandemic, there was a global shortage of pilots, with people flying more due to a rise in more affordable airlines and falling fuel costs. In fact, the 2020-2029 CAE Pilot Demand Outlook suggested that the global civil aviation industry will require more than 260,000 pilots by the end of the decade.

However, when demand for air travel dropped across the globe, airlines were quick to offer early retirement packages to reduce immediate outgoings. Whilst this approach helped some airlines stay afloat during the slowdown, a wave of early retirements has left them on the back foot.

Now demand is coming back much faster than expected. In the US alone, the Bureau of Labor Statistics is expecting 14,500 openings for commercial and airline pilots each year until 2030, and this imbalance is already having a detrimental impact on the aviation industry. With flights being cancelled, travellers left stranded, and some airports losing service altogether, it is crucial that the larger aviation ecosystem comes together to work out a solution to effectively address this pilot shortage crisis, so that it can once again meet capacity demands.

Re-directing efforts to rebuild pilot pools

With vast swathes of pilots put on furlough during the pandemic – and therefore unable to maintain their license requirements, the damage isn’t just in the ongoing pilot shortage, but also in the decades of experience the industry has lost. In response to this narrative, last month a Senator in the US introduced legislation to raise the mandatory retirement age of commercial airline pilots from 65 to 67 – and the US are not alone in this shift. Last week, Air India announced that it will be raising their retirement age for pilots from 58 to 65. Now we need to see other countries and airlines follow suit to help retain the talent that can help guide and mentor the next generation of cadets.

Moreover, training schools and airlines will need to work together to challenge industry stereotypes and empower more women to pursue a career in the cockpit. Currently, just 5.1 per cent of the world’s commercial pilots are women. This means that for every twenty flights taken, only one of them will be piloted by a woman. Unfortunately, this gender imbalance has become a long-established trend within the aviation industry and, stereotypically, pursuing a career as a pilot has been considered a male occupation, with women type cast to cabin crew instead. Therefore, if we are to make proactive strides towards addressing the current pilot shortfall, finding a way to shift that percentage is essential.

The cost of training to be a pilot is also a key barrier the industry needs to address, and at pace. On average, the cost to train as an air transport pilot can exceed $100,000 – making a career in the cockpit unattainable to many. One way for the industry to help narrow the gap and mitigate what is often seen as a considerable financial risk, is to make bursaries more accessible. There are already a number of programmes in place, to support both aspiring pilots and those who need to maintain their licenses, however, now the industry needs to work on championing and expanding these support systems.

The industry also needs to start to embrace alternative approaches to alleviate this substantial outlay. For example, at Alpha Aviation, we have started running the the Multi-Crew Pilot License (MPL). This is a shorter, more simulator-focused way of training that not only opens up opportunities for prospective cadets from less privileged backgrounds, but also offers a more flexible training programme and quicker route to qualification – reducing the financial expenses for cadets to cover.

Technological innovations can also play a crucial role in advancing the training process to help support a consistent employee base. For example, e-learning programmes can enable airlines to expand cadet class sizes. No longer restricted by the physical capacity of training centres, e-learning programmes have the potential to significantly open up access to becoming an aviator and will ensure airlines can recruit the best talent, irrespective of locality. In addition to this, pilots still need to clock up over 1,500 flying hours to receive their ATP certificate. Therefore, investing in simulator training facilities is now pivotal in supporting cadets to keep on top of the legal requirements and improve their skills set at a significantly quicker pace, alongside supporting existing pilots to retrain on new aircrafts when necessary.

Looking ahead

The pressure on the aviation industry shows no signs of abating any time soon. Therefore, while it is great to see passenger numbers returning to near pre-pandemic levels, the industry needs to take this as a significant wakeup call and re-assess its pilot recruitment process.

At the end of the day, there is no quick fix – training top of their class pilots takes time, investment and enthusiasm. However, addressing the ongoing chaos and driving the sector out of this turbulent period is essential to the economic revival of the nation. Therefore, decisive action is needed – and it is needed now.

Continue Reading

Auto

How the semiconductor shortage is affecting the automotive sector

Just a few years ago, we were talking about the talent shortage within the semiconductor sector.

Today, we are talking about a very different, but just as damaging, shortage – the semiconductors themselves.

  • Ford shut its Germany-based factory for a month
  • Volkswagen declared they would build 100,000 fewer cars
  • Honda UK shut down for several days

These are just some of the realities of a silicone chips (semiconductor) shortage.

The automotive sector isn’t the only industry being hit. Still, it is largely feeling the impact due to its reliance on the chips to operate power windows, airbags, dashboard displays, catalytic converters and, of course, for electrification.

Why is there a semiconductor shortage?

The silicone chips shortage in the automotive sector is the result of multiple factors, including the pandemic, geopolitical disagreements, factory and plant fires, and freight constraints:

When COVID-19 hit, a drop in sales led to many vehicle manufacturers reducing their orders.

This meant the companies that usually supplied them with their silicone chips moved on to other customer bases such as the electronic and IT sectors.

When automotive demand began to recover, manufacturers were effectively put to the back of the queue; as semiconductors manufactured for video games and 5G smartphones yield higher profit margins than those utilised in vehicle manufacturing.

Geopolitics also played a role, particularly for US and China-based companies. When the Trump Administration tightened semiconductor sales regulations to ZTE, Huawei Technologies and more, these firms began stockpiling in response.

China’s Semiconductor Manufacturing International Corporation also cut off US firms.

Two fires in Japan added to the disruption, particularly for the automotive sector, as one of the factories was manufacturing advanced sensing devices.

Finally, global transportation constraints have contributed to the shortage. Not only is ocean freight struggling to leave ports in China to deliver the chips, but a lack of shipping containers means manufacturers are forced to pay premiums.

It doesn’t look great for airfreight systems either, as vaccine delivery naturally takes precedence, and a shortage in passenger travel is further reducing freight opportunities. The volume of connected and unconnected circumstances has resulted in a shortage of semiconductor chips, meaning that automotive sales will likely be even lower than what was predicted in response to the pandemic.

What’s being done?

In a letter directly to President Biden, groups from the automotive, telecommunications, healthcare sectors and more called on the government to ‘reinvigorate semiconductor manufacturing in the US’

Jen Psaki, the Whitehouse Press Secretary, stated in February that Biden plans to take on a comprehensive review of supply chains and critical goods.

But when it comes to a plan to help the automotive industry and others, not much can be done presently.

That’s because the construction of new factories, which seems to be the apparent solution, requires billions of dollars and many years to construct.

Currently, US silicone chip factories host a mere 12% of global semiconductor manufacturing, and the lead time for manufacturing a semiconductor chip can be up to 26 weeks.

It isn’t all doom and gloom, though. While there may be little short-term gains, some will eventually benefit from the current silicon chip shortage.

Who benefits from the semiconductor shortage?

UK chip manufacturers: The UK’s largest chip factory, Newport Wafer Fab, is looking to cash in on the shortage, using the funding to increase the number of chip wafers it makes from 8,000 to 14,000. This will be particularly advantageous if automotive manufacturers move their orders to UK-based businesses, which aren’t involved in the geopolitical disputes mentioned earlier.

US chip manufacturers: While US-based auto manufacturers will continue to struggle in the short-term, the shortage has called to light the need to build more semiconductor factories ‘at home’.

Semiconductor job seekers: Whether within the automotive industry or another industry that is reaping the benefits of silicon chip production, skilled job-seekers will undoubtedly see even more opportunities arise later down the line.

Continue Reading

Auto

New driving simulator technology helps car makers to develop cars in shorter time and more sustainably

The latest simulator from specialists Ansible Motion will support car makers to shorten development times and test in a more sustainable way. With simulation now a key enabler for vehicle manufacturers to develop their ever-increasing range of new vehicle technologies and advancements, the UK firm is ensuring they have a capable and effective means of supporting the varied requirements now needed.

Designed to be capable of validating the technologies needed to enable megatrends of electrification, autonomy, driver assistance as well as HMI and vehicle dynamics, Ansible Motion has revealed full details of the production Delta series S3 Driver-in-the-Loop (DIL) simulator.

Manufactured in-house in Hethel, Norfolk, Ansible Motion’s all-new AML SMS2 Stratiform Motion System is at the heart of the Delta S3’s dynamic capabilities, delivering a best-in-class and refined physical experience. The Delta S3’s scalable architecture also means that it can be built and delivered in multiple size options, making it ideal for a broad range of automotive product development use cases such as expert driver assessments, chassis dynamics, powertrain driveability, ADAS and active safety function calibration, V2X studies and HMI design evaluations.

“Our new Delta series S3 addresses a requirement from both OEMs and Tier Ones for a highly capable and versatile driving simulator – a single virtual environment that delivers everything needed to convincingly engage real people with the automotive product development process, early and often, sometimes well before prototype vehicles exist,” says Ansible Motion’s director, Kia Cammaerts. “We have always focussed on achieving high-dynamic and high-fidelity motion for all six degrees of freedom that define a vehicle’s movement. The new Delta series S3 simulator expands on this in all areas, ensuring it’s a dependable tool that meets the demands necessary to validate future automotive technologies.”

The simulator supports car makers’ and suppliers’ desire to develop their cars more sustainably too. On announcing its purchase of the Delta series S3 simulator, Continental said it will support the company’s goal to be the most progressive tyre manufacturer in terms of environmental and socially responsible business practices. This would support its aim to reduce real-world testing by up to 100,000 kilometres per year by 2030 and use 10,000 fewer tyres for development.

Continue Reading

Copyright © 2021 Futures Parity.