Pharmaceuticals
SMART WEARABLES IN HEALTH TECHNOLOGY
Source: Finance Derivative
Gavin Bashar, UK managing director at Tunstall Healthcare, discusses smart wearables in health and social care, the benefits, and what the future holds.
For many years, technology has been integrated into every sector in the economy, from banking to shopping, to enhance the experience of customers.
However, health and social care services have fallen behind in terms of technology adoption and innovation, for reasons including fragmented structures, limited resources, and reluctance to change.
Yet person-centred technology has the power to transform lives, not only enabling the ongoing delivery of support services to vulnerable people, but reshaping the health and social care sector as a whole.
Technology-enabled health and care is the service of the future and the ongoing and unprecedented rapid acceleration in the adoption of care and health technology has demonstrated the numerous benefits in practice.
Why wearable technology?
Wearable technology enriches the lives of a range of cohorts, including people living with long term conditions such as dementia, and connects vulnerable individuals to key stakeholders such as clinicians and family members.
The better application of technology and wearable devices can deliver significant benefits including improved patient outcomes and service-user experiences, a reduction in the strain on staff and carers, and potential cost savings or avoidance.
Wearable devices and the systems they’re linked to use wireless and digital technology to enable support services to be efficient, flexible, responsive, and tailored to the individual. The unobtrusive devices also ensure that care delivery is discreet and won’t interrupt the daily life of service users.
Proactive healthcare is also easier thanks to wearable technology. Service users become much more engaged with their own health and have greater opportunity to develop a proactive approach to their health monitoring, rather than reacting. Technology can be used to enable intervention at an early stage by identifying irregularities before they become more significant health or care issues which require expensive care and treatment.
There is significant evidence that wearable technology offers users greater choice in terms of the care they receive and prevents incidents in the first place, by recognising an emergency as soon as it occurs. Community alarms and telecare services in particular are effective methods of signposting to clinicians and additional services when a user requires care, and this has been particularly important during the pandemic.
Wearables in a home and residential care setting
When providers are presented with unique opportunities to drive the adoption of digital health solutions such as wearables, there must be a focus on designing holistic services which fit seamlessly into the user’s life, work with clinical practices, and ensure any data that is collected is stored securely.
There is a huge range of wearable technology and devices available which perform a number of functions and can therefore be tailored to suit the needs of an individual and their stakeholders, such as carers and clinicians.
Small, discreet pendants available on the market can raise alarm calls in emergencies, and protect users living independently at home or in group living environments. Features can include integrated alarm buttons, LEDs for visual reassurance that a button has been pressed, easy to wear options, and auto low battery monitoring and alerts.
Falls are the main reason that older people are taken to hospital and unaddressed fall hazards in the home are estimated to cost the NHS over £430 million1. Smart wearables use advanced technology to allow users to raise an alarm from anywhere in their home or care setting if they are in difficulty. Some devices can also automatically raise an alert if a fall is detected.
This technology offers confidence to individuals who are at risk of falling, such as people with limited mobility, the elderly, and people with long-term conditions such as epilepsy, diabetes and Parkinson’s disease.
Wearable technology not only benefits vulnerable individuals living at home, but also those in residential care settings and their carers. Nurse call systems which are integrated with smart wearables can be personalised to ensure individual safety with minimal disruption to other care home residents. It also respects dignity while improving management insights, workflow efficiencies, staff morale, and care quality.
Devices can also be worn which protect users when away from home, automatically detecting falls, offering an SOS function and providing the user’s location.
The benefits of managed technology and smart wearables
Technology can require equipment from a range of manufacturers. Identifying, purchasing and managing devices from multiple sources can prove challenging and resource intensive for local authority community alarm centres.
Nottinghamshire County Council (NCC) has a managed healthcare service which includes home units, telecare sensors and wearable devices which are all tailored to the needs of individual service users.
All connections are monitored and referrals are made to the NCC Responder team, nominated contacts or the emergency services, as appropriate. NCC also has Reablement Assessment flats with telecare in place to support people leaving hospital, helping them to increase wellbeing and regain skills to enable them to return home.
Between October 2019 and December 2020, significant benefits and improved outcomes have been observed. Over 280 cases where a high and immediate risk of admission to residential care were avoided, and over 650 cases which required additional community care costs were avoided.
In total, savings of over £2.2 million have been achieved after additional service costs, costs of homecare for people diverted from residential care, and loss of client contributions have been deducted.
The next generation of wearable technology
The deployment of smart technology, including wearable devices, enables vulnerable people to live safely and independently for as long as possible. However as demands change, the care journey is now evolving rapidly and healthcare services must adapt accordingly.
We’re beginning to see the next generation of predictive care technology and smart wearable devices, and over the next few years this will encompass integration that enables diverse and scalable models of health and social care. Using AI and taking data-driven insight from multiple sources, providers will use this next generation of solutions to optimise Population Health Management programmes by providing personalised and anticipatory care.
Smart wearables in health and social care are designed to improve quality of life and empower individuals to take control of their health, while supporting the NHS and additional stakeholders by reducing the number of required GP visits, ambulance callouts, hospital admissions, and demand for local authority funded residential care
For more information on how wearable technology can support the ongoing delivery of proactive and effective support, please visit www.tunstall.co.uk
You may like
Business
How document management tools are transforming the healthcare sector
Grace Nam, Strategic Solutions Manager, Healthcare, at Laserfiche
With much of the NHS still stuck in the analogue age, outdated systems and siloed patient data are causing headaches for healthcare professionals and patients alike. Reports of doctors having to enter seven passwords just to access the information they need whilst patient satisfaction hits a record low with less than 25% of people stating that they are satisfied with the NHS in Britain makes for a bleak picture.
Healthcare institutions should be prioritising how their data is managed, stored, and shared across estates. The lack of unity and siloes puts sensitive patient data at risk, meaning that healthcare leaders may face hefty compliance fines, and patients may receive delayed support or a decrease in quality of care as a result.
As we look to the future, digitisation will be crucial to bring healthcare operations up to par – especially for a sector that handles such sensitive data and where efficiency gains can mean lives saved. Digitising patient touchpoints will give healthcare professionals a detailed picture of every patient’s medical history and ensure compliance with rules on data transparency.
But how do we ensure that digitised records are as safe and secure as the patients listed in them? And what role can AI and automation play in lessening the load on overstretched healthcare professionals?
Centralising patient data to meet regulatory requirements
More sensitive data means more scrutiny of data management. The NHS highlights the importance of looking after patient data carefully to adhere with the Data Protection Act (DPA), Common Law Duty of Confidentiality (CLDC), and GDPR. The DPA for example outlines that consent has to meet certain guidelines to be valid such as being used for a clearly defined purpose and being withdrawable – as easy to withdraw the data as it is to give it. However, outdated systems and disparate data make it difficult for NHS bodies to fulfil these requirements.
Creating a frictionless experience for busy healthcare professionals is crucial. Staff need to understand what data they can share, how they should share it, and what data should be deleted after a given time. A robust content services platform that centralises patient data improves this regulatory compliance by providing a complete oversight of record history and a single source of truth. Through this platform, medical professionals can share information securely and power automated retention policies that manage documentation throughout its lifecycle, ensuring compliance with regulations and retention laws.
This effective recordkeeping should be scalable and flexible, allowing for changes in existing workflows and evolving regulatory requirements.
Securing patient data as cyber-attacks soar
Regulatory compliance is just one piece of the cybersecurity puzzle. Ageing IT infrastructure and legacy systems leave patient data vulnerable to cyber attacks that have the potential to affect real lives. For instance, the recent Synnovis attack led to the leak of 400GB of sensitive data and sparked huge impacts for end-users with the cancellation of thousands of medical procedures.
By streamlining patient data management, healthcare professionals can also streamline security efforts and reduce the risk of cyber-attacks. Healthcare institutions should manage all patient data and customer information with secure storage, encryption, and stringent access controls through a platform that can track user activities and provide detailed audit trails of document access and modifications.
What’s more, this digitalised data management gives healthcare providers the opportunity to use AI. They can use this to integrate various data sources, including patient information and medical records, into the Electronic Health Record (EHR) system, creating a comprehensive view of a patient’s health history. Healthcare providers can also use AI to optimise medical records management, facilitating secure and centralised storage of medical records. This enables authorised staff to access information quickly and efficiently, while adhering to regulations. Automation can also streamline record lifecycles, minimising manual work and potential compliance fines.
Reducing the administrative burden on healthcare professionals
In addition to data security benefits, AI and automation can automate many manual tasks to free up valuable time for clinicians, who can then focus on delivering improved patient care. A snapshot survey of NHS and social care managers found that 20% spent seven to eight hours a day on admin – valuable time that could be spent helping patients.
In the NHS, technology and systems can be varied across a healthcare estate. With cloud-based integrations, healthcare leaders can synchronise their estate’s legacy processes and technologies with new solutions, allowing clinicians, physicians, staff, and patients to access their records anywhere, anytime. Weaving in powerful workflow automation can also immediately reduce admin headaches. Automation easily captures and populates information between departments, eliminating the need for manual data entry and wasted time looking through physical paperwork.
In fact, AI could save clinicians four hours of admin time each week. This could be through automating patient communication such as appointment scheduling and sending post-operative reminders. It could mean the improvement of clinical decision-making, where AI can analyse large quantities of clinical data to identify patterns and trends that can inform better treatment decisions. It could also mean enhancing healthcare data exchange, where AI can easily capture and integrate various types of patient data, including demographics, insurance information, and medical records. This not only ensures accurate data processing, but also allows for quick retrieval of information.
How healthcare providers manage their data is fast becoming a top priority. Whether healthcare providers are looking to remain compliant, protect data, or weave in time-saving technologies like AI and automation, effective document management will be vital to success.
Pharmaceuticals
Enhancing Energy Security in the Pharmaceutical Sector: Strategies and Challenges
By Stephen Grant, Managing Director, ENGIE Impact B2B Implementation Solutions
Energy security, referring to the uninterrupted availability of affordable energy sources, has become a paramount concern in recent years. Russia’s invasion of Ukraine and weaponisation of its energy highlighted the inherent vulnerabilities of energy supply chains. In the immediate aftermath of the war’s outbreak, Europe took measures to avoid supply disruptions, ease market pressures, and save energy.
Countries and regions around the world are now accelerating their clean energy transition through structural reforms of the energy system. This involves diversifying import routes and sources, filling gas storage tanks, and investing in infrastructure to reduce dependency on single suppliers. Additionally, they are promoting the import of renewable and low-carbon energy carriers as part of the broader goal to decarbonise the energy system while enhancing energy efficiency to reduce overall demand.
Energy supply security is not only a national issue but is also a critical concern for industries that depend on gas as their main energy source, such as the pharmaceutical sector. Given its specialised nature, stringent regulatory requirements, and reliance on continuous operation for the manufacture of critical products, this industry faces heightened risks. For pharmaceutical companies, maintaining a stable and secure energy supply is essential to ensuring the quality and safety of life-saving medications.
Strategies for Enhancing Energy Security
To enhance the energy security of an organisation, efforts should be directed towards minimising reliance on external energy sources like gas while maximising the utilisation of local, renewable energy and electrifying operations. The main strategies include:
- Reducing energy consumption: Introducing energy efficiency measures is the first step to lowering dependence on fossil fuels. From behavioral changes to technologies that minimise energy use, such as LED lighting or heat pumps that recover and reuse waste heat, reducing demand is a ‘no-regret’ option. Energy management systems that take an end-to-end approach can have a substantial impact on demand, integrating advanced monitoring, control, and optimisation technologies to manage and reduce energy consumption across the entire production process, from energy and material sourcing to product delivery.
- Electrification: When paired with a reliable renewable or low-carbon energy supply, electrification is synonymous with decarbonisation, as it significantly reduces the need for fossil fuels to power equipment and transport vehicles. As technologies advance, an increasing number of industrial processes can be powered by electricity.
- On-site renewable energy solutions: This may involve installing solar panels on facility rooftops, utilising biomass boilers, and exploring geothermal energy options. Solutions must consider the geographic (availability of underground heat sources) and operational conditions of the relevant sites. On-site biogas and biomass are less common in the pharma sector as companies don’t have sufficient waste products to valorise.
These measures have the dual impact of not only promoting energy security but also enhancing energy efficiency and carbon emissions reduction. An additional driver of security is replacing aging assets, such as gas boilers, with efficient electrical boilers that can be powered by green energy.
Challenges and Financial Considerations
While the urgency and benefits of undertaking measures to improve energy security are clear, the journey is not without its challenges.
- The cost of implementing decarbonisation solutions is one of the main reasons companies delay their efforts, as it typically involves substantial upfront capital.
- Physical space constraints could make it impractical to implement on-site solutions like solar panels or biomass boilers. An on-site biomass solution, for instance, needs space to store the biomass.
- Integrating new technologies into existing production processes is another big hurdle. Suppose the decision has been made to use a heat exchanger for heat recovery. This means interfering with the existing production system and potentially modifying it. Some clients view this as a risk to ongoing operations.
- Cultural resistance from on-site engineering teams is another common obstacle. These teams are accustomed to operating their existing reliable systems. They might resist the introduction of innovative technologies, or even resent external teams interfering with methods that have been successful for many years.
The question is how to overcome these obstacles. Looking at the financial aspect, there are two approaches to consider when analysing how to make energy security projects feasible: internal carbon pricing (ICP) and as-a-service models.
Companies that prioritise reducing their carbon footprint and are willing to accept the cost can usher carbon projects through their internal commitment process by setting up an ICP mechanism, paving the way to implement reduction projects. They can assign a cost to carbon, such as $100 per ton, which is then factored into their long-term financial analysis. This approach often improves the business case for investing in low-carbon technologies by quantifying the economic benefits of reducing emissions.
Companies more concerned about reducing cost can use an as-a-service model, which eases the financial burden by shifting the upfront cost to the service provider. In this case, the energy solutions provider finances the initial capital investment for new technologies and then charges the client a service fee. This approach not only reduces the upfront cost for clients but also aligns the incentives of both parties towards achieving energy savings, carbon reductions, and energy security.
Key Success Factors
The financial side of implementation is only one aspect of a broader strategy to achieve the means to energy security. We can identify three additional factors that are instrumental to the successful implementation of energy security and decarbonisation projects:
- Stakeholder engagement: This may be the linchpin to rolling out energy security measures. On-site engineering teams, for instance, often hold the budget of the local site. So, even if the corporate team is onboard with the solutions, the local teams must pay for them. Ensuring all stakeholders, from leadership to on-site engineering teams, are engaged and aligned with the project’s goals and understand its benefits, is paramount. Otherwise, the project could become difficult, if it’s not derailed altogether.
- Centralised project management: A strategic approach with central control and governance helps standardise processes and technologies across different sites. Centralisation that industrialises the procurement, installation, and commissioning of technology accelerates the overall program.
- Comprehensive agreements: Establishing master service agreements at the corporate level facilitates smoother implementation across multiple locations. These agreements provide a strategic framework that supports consistent and cohesive project execution, avoiding the complexities of negotiating individual contracts in different countries.
Building Resilience to Energy Risks
The pharmaceutical supply chain is complex and global. A breakdown of energy security at any point of this chain can have cascading effects, potentially disrupting the production and availability of essential products. The dependence on energy imports due to limited domestic energy resources, viewed in the light of potential disruptions to energy supply routes due to ongoing geopolitical complexities, has thus raised concerns about energy security in Europe, Asia, and beyond.
An appropriate response to this potential threat is within our grasp, as it dovetails with measures to accelerate the energy transition. Building energy resilience entails diversifying energy sources to reduce dependency on any single supply, improving energy efficiency to reduce overall energy needs, and enhancing local energy production to bolster self-sufficiency. Pharma companies can achieve these measures by forging strategic partnerships with service providers that merge consulting capabilities with the capability to implement the required solutions, thereby facilitating their transition to a more secure and sustainable future.
Business
How 5G and AI are shaping the future of eHealth
Global Director for AI/ML Solutions, Mona Nia Tecnotree
The digital transformation of the healthcare industry continues to gain momentum. This shift can be attributed to the rapid advancement of widely applied technologies such as 5G networks, cloud computing, artificial intelligence (AI), and big data.
Moreover, integrating 5G networks with cloud-based healthcare platforms and AI is driving the emergence of intelligent eHealth technology, projected to reach $208 billion by 2030, according to recent reports. Recent research by Grand View Research emphasises that the synergy between 5G and AI is pivotal in transforming healthcare by enabling faster data exchange, reducing latency, and improving the reliability of health solutions. This collaboration aims to revolutionise the healthcare sector by facilitating hyper-personalisation, optimised care, enhanced sales and services, and streamlined operations. Leading venture firms actively invest in healthcare start-ups using AI, fostering a rapidly growing ecosystem of innovative advancements.
As AI and 5G continue to make waves through all industries, healthcare needs to adapt to changes quickly. However, with operational, security, and data privacy concerns, healthcare organisations remain wary. As such, they must analyse their current and future needs to understand how AI and 5G technologies can help fulfil them and establish a comprehensive plan to guarantee its efficient and secure implementation in their practices.
Recent research by the International Data Corporation (IDC) emphasises that the synergy between 5G and AI could potentially reduce operational costs by up to 20% and improve patient outcomes by enabling more accurate diagnostics and personalised treatments.
5G Integration in eHealth
5G technology stands at the forefront of healthcare reform with its superior data speed and dramatically reduced latency. Tailored to concurrently accommodate multiple connected devices such as sensors, wearables and medical equipment, 5G is truly indispensable in healthcare, allowing IoT devices to seamlessly transmit accurate data for healthcare providers.
It empowers healthcare professionals to handle large, high-definition files like clinical visuals, videos, and real-time patient insights. 5G’s capability for network slicing—dedicating specific network segments for certain uses—simplifies the management of such files. In addition, it optimises the performance of each application, thereby removing the strain on medical staff.
However, the implementation of 5G technology shouldn’t be oversimplified. It’s essential to analyse the potential risks and challenges thoroughly. A principal component to consider is regulatory cybersecurity and data privacy. Given that 5G networks are susceptible to cyber attacks, it falls upon healthcare providers to protect data such as patient information.
Organisations should also consider the financial implications of implementing 5G technology, as it involves a considerable investment in infrastructure and equipment. Therefore, they must balance the potential gains against the costs to ensure the viability of the investment.
Recent discussions at Mobile World Congress 2024 highlighted the critical role of regulatory frameworks in ensuring the secure deployment of 5G in healthcare. Experts advocated for robust cybersecurity measures and collaborative efforts between technology providers and healthcare institutions to mitigate potential risks.
Marrying 5G and AI for Improved eHealth Solutions
Despite the challenges, integrating 5G and AI will pave the way for unprecedented growth within the internal medical ecosystem, enhancing healthcare quality and patient results. For example, deploying data to carry out descriptive-predictive-prescriptive analytics and transmitting the acquired insights using 5G can drastically improve the user experience while helping make informed decisions. Such an approach can assist healthcare organisations in identifying promising healthcare use cases like remote patient monitoring, surgical robotics, and telemedicine.
Moreover, AI-facilitated hyper-personalisation, driven by the profusion of data accessible through 5G networks, can evaluate patient histories, genetic profiles, and lifestyle elements alongside real-time vitals to prescribe tailored advice and treatments. AI can also automate scheduling appointments, streamline supply chain management, and enhance transactions such as claims and prior authorisations. AI-powered chatbots and virtual assistants can deliver real-life support, while patient and customer service applications can provide an enriched experience through increased data accessibility.
AI can also streamline healthcare services by predicting and managing disease outbreaks. Supported by 5G’s capacity for real-time operability, AI systems can instantly analyse patient data, oversee bed availability, and notify medical personnel of potential complications—promoting efficient, effective care delivery.
Finally, AI-empowered fraud detection algorithms operating on 5G networks can analyse copious amounts of data in real time to detect suspicious activities and alert responsible security teams. This can also be applied to security cameras that can detect anomalies in patients’ and visitors’ behaviour and notify appropriate staff members.
A study published in the Journal of Medical Internet Research (JMIR) in 2023 demonstrated that combining AI and 5G in telemedicine significantly improved patient satisfaction and reduced consultation times by 30%.
Shaping an AI Blueprint for 5G eHealth
Integrating AI and 5G technologies can revolutionise disease assessment and surveillance, facilitating more precise diagnostics and tailored treatments. In return, it will drastically improve the standard of care, curbing expenses and boosting efficiency.
Over the next few years, healthcare providers should focus on specific areas where 5G and AI can deliver the most impact. For example, developing telehealth platforms that excel in security, accessibility, and user-friendly interfaces will be paramount. This design aspect is set to thrive, particularly with 5G paving the way for high-definition video consultations, remote patient monitoring, and instant data sharing between patients and healthcare
providers.
The precision and availability of diagnostic applications powered by AI and tele diagnostic services will notably increase in tandem with the widespread adoption of 5G. The strategic emphasis should be on enriching its capabilities, ensuring compatibility with existing systems, and seamlessly integrating the tech into existing healthcare processes.
AI-guided care management systems will also play an integral role in eHealth. There is a need to structure these systems to constantly monitor patient progress, suggest highly personalised treatments, and coordinate care across multiple providers while prioritising patient privacy and data protection.
Finally, when it comes to home health monitoring, emphasis should be placed on creating IoT devices that can integrate seamlessly with AI-driven health platforms and securely transmit data; this will be a critical development within the field.
The synergy between 5G technology and AI will continue revolutionising the healthcare industry, offering more customised, efficient, and cost-friendly solutions. By developing a precise AI blueprint for critical eHealth applications and capitalising on the capabilities of 5G, the benefits will drastically outweigh the challenges.