Business
Why wealth management and augmented intelligence go hand-in-hand

Source: Finance Derivative
There is a perception of wealth management as a sector that traditionally relies on a personal touch. Investment advisors counsel clients on how to achieve their individual investment goals, based on their innate market understanding and instinct for a deal.
Although that was probably once true, it’s a time that has long since passed. Many wealth managers have invested heavily in digitalisation to enhance their personal interactions with clients, and advisors are far more aware of the need to embrace technology, especially to make better use of the data they hold.
Yet of the technologies that have been invested in, Artificial Intelligence (AI) has its limitations. For wealth managers to thrive in 2022 and beyond, AI must be further enhanced, and augmented intelligence – which combines the power of AI with humans’ imagination, intuition and intelligence – is the answer.
An industry in flux
The High-Net-Worth Individuals (HNWI) and Ultra-High-Net-Worth Individuals (UHNWI) who comprise the majority of wealth management clients belong primarily to a socio-economic grouping that is generally less receptive to technology than others. This means that there has been less incentive for wealth management firms to make more proactive use of innovative technology.
But HNWI and UHNWI demographics are changing, and the new wave is far more receptive to technology. Data is becoming intrinsic to successful wealth management. Wealth managers need to utilise data analytics tools and get as much insight as possible from the data they hold on their clients and markets.
Yet AI has its limitations here. Although it can provide information to wealth managers, AI has no instinct, creativity, or ethics. It presents information dispassionately and without intent, which limits its usefulness.
There are also issues around AI and access to data. Much of any organisation’s data is siloed, making it much harder to view it in context and see the bigger picture. Furthermore, the most insightful data for wealth managers is invariably the unstructured data – the call notes, client emails, financial alerts and premium data sources. Yet, most organisations and their AI solutions don’t have the appropriate technical solutions in place to work with unstructured data scattered across different systems, leaving these insights unused.
The role of augmented intelligence
Augmented intelligence delivers the insights that allow wealth managers to perform even better for their clients. Starting with an insight engine, which allows wealth managers to leverage unstructured data quickly and efficiently, augmented intelligence supports and enhances many further areas. Cognitive search, for example, can improve access to information and business efficiency but augmented intelligence goes even further, using Natural Language Processing (NLP) across all data, and then marrying that data with the user’s context and intent to deliver even better results.
Augmented intelligence can provide tangible and specific benefits to any number of business functions. For example, risk assessment in investment is always vital, so an augmented intelligence solution can connect data sources and apply NLP and Machine Learning (ML) to them. It can then use that insight to monitor all potential risk factors. Lastly, it provides wealth managers with next best action recommendations to help actively assess and mitigate ongoing risk levels.
Deal sourcing and sales
A key element in successful wealth management is monitoring the markets and understanding what investment opportunities are available for clients. Augmented intelligence can do this in real-time, delivering insights on a particular client to the wealth manager, as and when things on the market occur.
Wealth managers can quickly see what opportunities are available and then approach their clients.
It can go even further than this too. Augmented intelligence solutions can provide next best action recommendations on which opportunities are likely to be of most value and interest to a client. This digital-first approach is becoming more common in wealth management and the wider Financial Services industry.
In fact, digital-first is becoming crucial. Recent Accenture and Orbium research revealed wealth managers expect to lose nearly one-third (32%) of their clients’ wealth through intergenerational wealth transfers over the next 30 years. Much of this will be due to wealth managers lacking a customised approach that appeals to digital natives in the next generation of wealth. Using augmented intelligence clears the way for a brand new future of sales within wealth management.
Improved customer experience
One of the concerns that wealth managers have had about tech is that it will take away from the more interpersonal engagement that the sector traditionally relies on. But using augmented intelligence will improve the customer experience, enhancing a wealth manager’s experience and intuition with data-driven insights.
But intuition and knowledge are not enough. A wealth manager’s talents need to be enhanced with technology that can gather and process data from disparate sources to provide valuable information for effective customer engagements. This makes communication smarter and more meaningful.
The wealth management industry is in the midst of change. There is an increasing awareness in the industry of the need to get more value from data, make better use of technology and meet the requirements of the more digital-focused next generation of wealth. The best way of doing so is via augmented intelligence, which provides a more data-driven experience without losing any of the personal elements that have always been so important in wealth management.
About the author
Dr. Dorian Selz is the CEO and co-founder of Squirro, which works with organisations to bring them greater insight from their data.
You may like
Business
Embedded Finance: The Opportunity Ahead

Unlocking Growth with Corporate Embedded Finance
By Eduardo Martinez Garcia, CEO & Co-founder of Toqio
The current financial landscape is undergoing a significant transformation, disrupting the long-established dominion of major banks and other large financial institutions. Embedded finance, a concept that has thrived in the realm of digital consumer products, is now steadily infiltrating the corporate domain, poised to revolutionize the financial sector further.
This paradigm shift is manifesting in a multitude of ways, with digital embedded finance increasingly becoming an integral part of corporate digital offerings. Distributor payment processing, lending services for suppliers, and supply chain financing are all becoming commonplace – the versatility of corporate embedded finance knows no bounds. Despite the diverse applications the core objectives remain consistent, including enhancing B2B processes, mitigating risks, and fortifying business relationships.
Corporate embedded finance promises to deliver substantial value over the course of the next decade. A burgeoning opportunity beckons, estimated to be worth an astonishing USD 3.7 trillion over the next five years alone. Remarkably, more than 50% of businesses have expressed a preference for cash flow financing through platforms rather than traditional banks, as per a report by McKinsey. The shift observed in consumer embedded finance adoption is creeping into the B2B landscape, and moving more quickly all the time. Consequently, if the high level of adoption of consumer embedded finance carries over into the B2B space, and it’s certainly expected to, we’re genuinely looking at the next big thing.
Customer experience takes the helm
Customers are no longer passive passengers in their financial journeys; they have emerged as the navigators, steering the industry’s course while financial institutions focus on risk management. Banks and non-banking financial institutions (NBFIs) remain pivotal, but their control of products is waning. Companies, intimately acquainted with their customers and partners, possess a deeper understanding of their collaborative ecosystem. Consequently, they are better equipped to tailor their financial offerings to meet the needs of their business relationships.
Take Amazon, for instance, which has been offering loans to small businesses operating on its platform for years. Amazon evaluates risk based on a merchant’s payment history, sales volume, projected revenue, and other critical data points. This approach enables Amazon to provide additional value to its sellers while securing a foothold in the financing market. The close rapport Amazon shares with its small business partners positions it with substantially less risk compared to conventional banks.
Shopify has also ingeniously woven embedded finance into the very fabric of its offering. While its core service revolves around delivering an efficient, subscription-based e-commerce platform, it also provides payment processing and lending services, among a myriad of other financial solutions. Shopify boasts an extensive reservoir of data, allowing it to make informed decisions about the financial products it can offer to merchants, all while keeping risk to a minimum.
Decentralizing financial services
Historically, financial products have fallen within the purview of major corporations either through partnerships with third parties or in-house service creation. Nevertheless, the rise of digital channels has expedited the decentralization of financial services, and it’s snowballing. Companies spanning various industries, from automakers to retail giants, are recognizing the immense untapped potential in taking control of many functions traditionally handled by financial institutions. While financial institutions will endure, their role is evolving. Their strengths are assessment, management, and specialized services. They must pivot towards analyzing data from a multitude of sources, diving into data lakes to provide genuinely useful risk assessments.
Incumbents aren’t going to disappear
Incumbent banks have demonstrated their staying power and adaptability time and time again, mostly due to being able to leverage their size and relative dependability. They’ve capitalized on their vast customer bases, regulatory compliance expertise, and extensive branch networks to maintain a competitive edge. Additionally, incumbent banks have finally begun to recognize the need to adapt to changing customer expectations and digital transformation.
The future of core banking is likely to strike a balance between fintech disruptors and established incumbents. Collaboration and partnerships between incumbents and fintech startups tend to drive innovation, offering customers cutting-edge digital experiences. Big banks are probably going to find their place in the market modified, and not necessarily in a bad way.
Navigating the path ahead
Incumbents and financial behemoths have long been oriented toward long-term financial products, such as 30-year mortgages. But what about short-term business loans? Consider the restaurateur seeking a swift three-month loan to renovate a kitchen or the farmer unable to repay a loan until the crops are harvested and sold, a process spanning six months or more. For traditional banks, these scenarios represent short-term debts, a situation they tend to avoid. This presents a prime opportunity for companies to tailor products that cater to these specific needs, allowing them to define the space.
The evolution of embedded finance is commencing with payments, as it represents one of the least regulated segments in finance, offering ample room for innovation. Credit, closely trailing payments in significance, holds paramount importance. What’s really exciting is that as corporate giants blaze the trail, they pave the way for others to follow suit. This means that small and medium-sized enterprises will also be able to get involved, making embedded finance more inclusive within a given business ecosystem.
Eduardo Martinez Garcia is the CEO & Co-Founder of Toqio. He is an avid entrepreneur who has set up and run successful global ventures in the UK, Spain, and South Africa over the course of the last 20 years.
Business
Hype, Hysteria & Hope: AI’s Evolutionary Journey and What it Means for Financial Services

Source: Finance Derivative
Written by Gabriel Hopkins, Chief Product Officer at Ripjar
Almost a year to the day since ChatGPT launched, the hype, hysteria, and hope around the technology shows little signs of abating. In recent weeks OpenAI chief Sam Altman was removed from his position, only to return some days later. Rishi Sunak hosted world leaders at the UK’s AI Safety Summit, interviewing the likes of Elon Musk in front of an assembly of world leaders and tech entrepreneurs. While behind the scenes, AI researchers are rumoured to be close to even more breakthroughs within weeks.
What does it all mean for those industries that want to benefit from AI but are unsure of the risks?
It’s possible that some forms of machine learning – what we used to call AI – have been around for a century. Since the early 1990s, those tools have been a key operational element of some banking, government, and corporate processes, while being notably absent from others.
So why the uneven adoption? Generally, that has been related to risk. For instance, AI tools are great for tasks like fraud detection. It’s a well-established that an algorithm can do things that analysts simply can’t by reviewing vast swathes of data in milliseconds. And that has become the norm, particularly because it is not essential to understand each and every decision in detail.
Other processes have been more resistant to change. Usually, that’s not because an algorithm couldn’t do better, but rather because – in areas such as credit scoring or money laundering detection – the potential for unexpected biases to creep in is unacceptable. That is particularly acute in credit scoring when a loan or mortgage can be declined due to non-financial characteristics.
While the adoption of older AI techniques has been progressing year after year, the arrival of Generative AI, characterised by ChatGPT, has changed everything. The potential for the new models – both good and bad – is huge, and commentary has divided accordingly. What is clear is that no organisation wants to miss out on the upside. Despite the talk about Generative and Frontier models, 2023 has been brimming with excitement about the revolution ahead.
Two Objectives
A primary use case for AI in the financial crime space is to detect and prevent fraudulent and criminal activity. Efforts are generally concentrated around two similar but different objectives. These are thwarting fraudulent activity – stopping you or your relative from getting defrauded – and adhering to existing regulatory guidelines to support anti-money laundering (AML), and combatting the financing of terrorism (CFT).
Historically, AI deployment in the AML and CFT areas has faced concerns about potentially overlooking critical instances compared to traditional rule-based methods. Within the past decade, and other regulators initiated a shift by encouraging innovation to help with AML and CFT cases. Despite the use of machine learning models in fraud prevention over the past decades, adoption in AML/CFT has been much slower with a prevalence for headlines and predications over actual action. The advent of Generative AI looks likely to change that equation dramatically.
One bright spot for AI in compliance over the last 5 years, has been in customer and counterparty screening, particularly when it comes to the vast quantities of data involved in high-quality Adverse Media (aka Negative News) screening where organisations look for the early signs of risk in the news media to protect themselves from potential issues.
The nature of high-volume screening against billions of unstructured documents has meant that the advantages of machine learning and artificial intelligence far outweigh the risks and enable organisations to undertake checks which would simply not be possible otherwise.
Now banks and other organisations want to go a stage further. As Generation AI models start to approach AGI (Artificial General Intelligence) where they can routinely outperform human analysts, the question is when, and not if, they can use the technology to better support decisions and potentially even make the decisions unilaterally.
AI Safety in Compliance
The 2023 AI Safety Summit was a significant milestone in acknowledging the importance of AI. The Summit resulted in 28 countries signing a declaration to continue meetings to address AI risks. The event led to the inauguration of the AI Safety Institute, which will contribute to future research and collaboration to ensure its safety.
Though there are advantages to having an international focus on the AI conversation, the GPT transformer models were the primary focus areas during the Summit. This poses a risk of oversimplifying or confusing the broader AI spectrum for unaccustomed individuals. There is a broad range of AI technologies with hugely varying characteristics. Regulators and others need to understand that complexity. Banks, government agencies, and global companies must exert a thoughtful approach to AI utilisation. They must emphasise its safe, careful, and explainable use when leveraged inside and outside of compliance frameworks.
The Road Ahead
The compliance landscape demands a review of standards for responsible AI use. It is essential to establish best practices and clear objectives to help steer organisations away from hastily assembled AI solutions that compromise accuracy. Accuracy, reliability, and innovation are equally important to mitigate fabrication or potential misinformation.
Within the banking sector, AI is being used to support compliance analysts already struggling with time constraints and growing regulatory responsibilities. AI can significantly aid teams by automating mundane tasks, augmenting decision-making processes, and enhancing fraud detection.
The UK can benefit from the latest opportunity. We should cultivate an innovation ecosystem with is receptive to AI innovation across fintech, regtech, and beyond. Clarity from government and thought leaders on AI tailored to practical implementations in the industry is key. We must also be open to welcoming new graduates from the growing global talent pool for AI to fortify the country’s position in pioneering AI-driven solutions and integrating them seamlessly. Amid industry change, prioritising and backing responsible AI deployment is crucial for the successful ongoing battle against all aspects of financial crime.
Business
Using AI to support positive outcomes in alternative provision

By Fleur Sexton
Fleur Sexton, Deputy Lieutenant West Midlands and CEO of dynamic training provider, PET-Xi, with a reputation for success with the hardest to reach,
discusses using AI to support excluded pupils in alternative provision (AP)
Exclusion from school is often life-changing for the majority of vulnerable and disadvantaged young people who enter alternative provision (AP). Many face a bleak future, with just 4% of excluded pupils achieving a pass in English and maths GCSEs, and 50% becoming ‘not in education, employment or training’ (NEET) post-16.
Often labelled ‘the pipeline to prison’, statistics gathered from prison inmates are undeniably convincing: 42% of prisoners were expelled or permanently excluded from school; 59% truanted; 47% of those entering prison have no school qualifications. With a prison service already in crisis, providing children with the ‘right support, right place, right time’, is not just an ethical response, it makes sound financial sense. Let’s invest in education, rather than incarceration.
‘Persistent disruptive behaviour’ – the most commonly cited reason for temporary or permanent exclusion from mainstream education – often results from unmet or undiagnosed special educational needs (SEN) or social, emotional and mental health (SEMH) needs. These pupils find themselves unable to cope in a mainstream environment, which impacts their mental health and personal wellbeing, and their abilities to engage in a positive way with the curriculum and the challenges of school routine. A multitude of factors all adding to their feelings of frustration and failure.
Between 2021/22 and 2022/23, councils across the country recorded a 61% rise in school exclusions, with overall exclusion figures rising by 50% compared to 2018/19. The latest statistics from the Department for Education (DfE), show pupils with autism in England are nearly three times as likely to be suspended than their neurotypical peers. With 82% of young people in state-funded alternative provision (AP) with identified special educational needs (SEN) and social emotional and mental health (SEMH) needs, for many it is their last chance of gaining an education that is every child’s right.
The Department for Education’s (DfE) SEND and AP Improvement Plan (March 2023).reported, ‘82% of children and young people in state-place funded alternative provision have identified special educational needs (SEN) 2, and it (AP) is increasingly being used to supplement local SEND systems…’
Some pupils on waiting lists for AP placements have access to online lessons or tutors, others are simply at home, and not receiving an education. In oversubscribed AP settings, class sizes have had to be increased to accommodate demand, raising the pupil:teacher ratio, and decreasing the levels of support individuals receive. Other unregulated settings provide questionable educational advantage to attendees.
AI can help redress the balance and help provide effective AP. The first challenge for teachers in AP is to engage these young people back into learning. If the content of the curriculum used holds no relevance for a child already struggling to learn, the task becomes even more difficult. As adults we rarely engage with subjects that do not hold our interest – but often expect children to do so.
Using context that pupils recognise and relate to – making learning integral to the real world and more specifically, to their reality, provides a way in. A persuasive essay about school uniforms, may fire the debate for a successful learner, but it is probably not going to be a hot topic for a child struggling with a chaotic or dysfunctional home life. If that child is dealing with high levels of adversity – being a carer for a relative, keeping the household going, dealing with pressure to join local gangs, being coerced into couriering drugs and weapons around the neighbourhood – school uniform does not hold sway. It has little connection to their life.
Asking the group about the subjects they feel strongly about, or responding to local news stories from their neighbourhoods, and using these to create tasks, will provide a more enticing hook to pique their interest. After all, in many situations, the subject of a task is just the ‘hanger’ for the skills they need to learn – in this case, the elements of creating a persuasive piece, communicating perspectives and points of view.
Using AI, teachers have the capacity to provide this individualised content and personalised instruction and feedback, supporting learners by addressing their needs and ‘scaffolding’ their learning through adaptive teaching.
If the learner is having difficulty grasping a concept – especially an abstract one – AI can quickly produce several relevant analogies to help illustrate and explain. It can also be used to develop interactive learning modules, so the learner has more control and ownership over their learning. When engaged with their learning, pupils begin to build skills, increasing their confidence and commitment.
Identifying and discussing these skills and attitudes towards learning, with the pupil reflecting on how they learn and the ways they learn best, also gives them more agency and autonomy, thinking metacognitively.
Gaps in learning are often the cause of confusion, misunderstandings and misconceptions. If a child has been absent from school they may miss crucial concepts that form the building blocks to more complex ideas later in their school career. Without providing the foundations by filling in these gaps and unravelling the misconceptions, new learning may literally be impossible for them to understand, increasing frustration and feelings of failure. AI can help identify those gaps, scaffold learning and build understanding.
AI is by no means a replacement for teachers or teaching assistants, it is purely additional support. Coupled with approaches that promote engagement with learning, AI can enable these disadvantaged young people to access an education previously denied them.
According to the DfE, ‘All children are entitled to receive a world-class education that allows them to reach their potential and live a fulfilled life, regardless of their background.’ AI can help support the most disadvantaged young people towards gaining the education they deserve, and creating a pathway towards educational and social equity.

Embedded Finance: The Opportunity Ahead

Hype, Hysteria & Hope: AI’s Evolutionary Journey and What it Means for Financial Services

Using AI to support positive outcomes in alternative provision

The Sustainability Carrot Could be More Powerful Than the Stick!

Hybrid cloud adoption: why vendors are making the switch in 2022 and why you should too
