Connect with us

Business

How to prepare for the death of linear banking

Source: Finance Derivative

By Sudeepto Mukherjee, Executive Vice President, Financial Services at Publicis Sapient

The future of banking is ever-evolving as banks must adapt to new technologies and customer preferences. Over the last few years, most banks have used Customer journeys to become more customer centric and enhance core areas of their business business. Focus on improving services like “onboarding” or “getting a loan” have resulted in a better experience and faster response times for most customers.  However, customer journeys remain far from what they could be – most are designed for the most basic experiences and aren’t hyper-personal or specifically targeted. Legacy technology , siloed operating model and the inability to capture timely metrics around customer needs and pain points  can be barriers to overcoming this challenge.

As a result, customers are inevitably offered generic journeys with a thin veneer of personalization that barely scratches the surface of feeling tailored.  But with the rise of digital banking, innovative FinTechs, AI, machine learning and data analytics, banks can now offer customers infinitely more options than ever before when it comes to managing their finances and a clear trend towards more personalised and non-linear banking experiences is emerging.

Because of this, the future of banking will be significantly different. An area where huge progress can be made is hyper personalisation – experiences  will be customized for the individual by meeting specific needs and processing a wide range of metadata around behaviour, assets, age, ethnicity, gender and literacy. Customer journeys will ultimately  feel much more personal and inclusive.

For banks, this means moving away from making decisions based on broad segment categorisation to analysing and understanding data on an individual level.

Troublesome journeys

One of the catalysts for these changes is that while the current focus on journeys has driven optimisation and cost savings, it has failed to significantly move the needle on increasing wallet share (through cross sell) and enhancing customer experience. Most journeys follow a traditional “channel marketing” style – a linear process of a product or service from start to finish. This process raises challenges because channel marketing is so focused on the endgame, in terms of distribution, that it sticks to a rigid design and fails to provide optionality to customers. With this approach and these constraints that allow for no diversions, the result is that customer journeys are lacklustre and in need of an overhaul.

A customer journey is typically designed as a ‘happy path’. But when companies have ‘unhappy paths’ to deal with, like seemingly insurmountable expectations around products or experiences, there is little room for flexibility or adaptation. The distribution-led channel approach makes the customer journey unresponsive to feedback, for example, which isn’t ideal.

Once linear customer journeys are replaced by always-on targetted solutions, the pathways can become more reflexive. The result will be tailored feedback that can be sent in real-time to make the journey more relevant to solving specific needs. Here’s how this change could happen.

The human approach

Every brand wants to be both inclusive and accessible. In the financial services industry, banks are arguably one of the most integral parts of societal infrastructure. If your money isn’t held in a bank, it’s likely you don’t meet the most basic requirements for survival, such as getting a home or a job, and as a result you become unable to fulfil basic daily tasks and functions. You see a huge focus in developing countries like India to make banking more accessible to citizens. This is a win-win as banks benefit from rising customer deposits and citizens benefit by getting access to more financial products and services to enhance their wealth.

But, banks face a dilemma: their products and services are targeted towards people who have money as they derive a majority of profits from them –  yet by not catering to people who don’t have money, they are missing out on a huge opportunity to enhance future profits as these people can significantly enhance their wealth by becoming bank customers.

The big reason for this is the high cost of serving the different cohorts and this cost of variance means that banks can’t be inclusive to those whose money isn’t sitting in a bank or to people of protected characteristics because it’s simply too expensive. But as we have discussed above, there is not only a moral and societal expectation but also a huge financial benefit for banking providers to be inclusive of all members of society. The core reason for their inability to do this comes down to the limitations of technology, a gap in data and the degree to which experiences can be adaptive and hyper-personalised. Computation Design where machines and algorithms can leverage data to provide specific experiences tailored to very individual needs can help change this paradigm.

Using machine learning to emulate human experience

The human approach and computational design thinking are aligned in many ways. Both approaches operate on the idea that experience is personal, subjective and contextual. In addition, our understanding of society will be increasingly necessary in creating those adaptive and inclusive experiences.

Computational design will drive adaptive experiences for customers through the power of artificial intelligence and machine learning. Machines will be able to create experiences without a need for direct human intervention and this will, in turn allow experiences to scale. Going forwards, scaling won’t be about our ability to design – it will be about our ability to understand different populations of people and the subtle differences in their needs.

Diversity and inclusion targets are targets which everyone should be morally driven to strive towards because there’s absolutely no question that being inclusive and representative of society is the right thing to do and drives financial and mental well being for citizens To reach the point at which a financial services organisation can be inclusive, it must move on from generic customer journeys and focus on adaptive experiences. It must start considering the data that it wants to capture now and this process is about getting that data through current systems, interfaces and experiences.

The next major issue that banks will have to address as they gear up for the future of their customer journeys is how to wrestle with their privacy policy. This is the degree to which organisations think about data privacy: what they can and cannot capture and what they will and will not do with the data in ways that are more transparent and explicit than they are now.

Two things that banks can start doing now are thinking about the richer data needs of the future and start capturing data now, to collect high-quality data sets that will support personalisation in the future – and understand that data privacy and customer data policies should be much more intentional to ensure they’re aligned with customer values.

Although many current journeys lack flexibility, banks can start analysing them now because they can still be valuable in terms of data captured for the future. And, even if they can’t act on it right now,  organisations should begin to capture data –  to build and gather information in advance of its value. This will make the process of an organisational shift towards non-linear banking journeys in the future much easier.

The End (of the customer journey)

The traditional linear banking customer journey will  continue exist to fulfil the most basic of needs like onboarding and providing access to core banking services. . However, banks need to start shifting towards a more adaptive model delivering first-rate, personalised customer experiences based on individual needs. The technology will soon exist where consent driven customer data will underpin a more direct customer experience engagement method that utilises chat-bots, real-time support and advice in order to truly meet customer expectations for 2023 and beyond.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Business

How will regulations effect the open banking sector?

Source: Finance Derivative

Martin Hartley – Group CCO of emagine Consulting 

Comments on the future of the open banking sector and how it will affect the UK market. 

“The UK Open Banking Sector is still primarily driven by regulation. In my view, two of the major current regulations will remain at the forefront moving forward, namely the CMA (Competition and Markets Authority), which mandated the major banks to provide open banking access to authorised third-party providers, and PSD2 (Second Payment Services Directive), which set the standards for secure data sharing. Cybersecurity regulations will only increase in importance, as will Brexit-related changes as any divergence between UK and EU standards could impact open banking.

“Over the upcoming months, increased data sharing through open banking will add crucial pressures to cybersecurity, likely creating a surge in the sector once again.

“I expect ongoing scrutiny and efforts to enhance data protection measures, potentially leading to more stringent cybersecurity regulations being adopted by businesses. I expect to see more partnerships between traditional banks and FinTechs or consultancy firms as they collaborate to enhance cybersecurity or offer innovative services to plug the gap. Conversely, there could be consolidation within the FinTech industry as companies merge to gain market share.

“When it comes to the size of the business and how it is affected, history has shown us that there are certainly positives and negatives of being an SMB when responding to new regulations. On the positive side, they can leverage their agility and they will have a more personal relationship with their customers, potentially leading to a higher level of trust. However, SMBs may face challenges due to their limited budgets and resources. The larger firms will have much larger budgets, allowing them to have more advanced IT systems and IT security, making it easier for them to integrate APIs and develop the necessary infrastructure.

“The benefits of open banking are endless, and the UK Government is showing their forward-thinking mentality in exploring the idea of implementing the technology to streamline wider services. But, much like anything, there are always pros and cons.

“Open banking would simplify payments for public services, making transactions quicker and more convenient for everyone. As it relies on APIs and authentication protocols, open banking would make payments more secure for the public and it would allow access to digital payments for members of the public who have smartphones but possibly no bank accounts. For any digital implementation, it goes without saying that we need to be aware of the risk of cyber attacks and data breaches. These, combined with the exclusion of non-tech savvy individuals, could mean that certain members of the public may not embrace the change, which poses a risk. There is also the additional cost of providing the infrastructure and this will have to be managed carefully to avoid burdening the taxpayer.

“We have already seen digital transformations in areas such as the GOV.UK Pay System and  there are two main indicators of the success of any digital implementation; adoption rates and incidents. There haven’t been any high profile incidents that have hit the headlines in recent times so that to me is a huge positive and provides a level of confidence. It would be interesting to see how many government departments and agencies have adopted GOV.UK Pay for their payment processing needs to understand the system’s usefulness and acceptance within the government. The government must be committed to continuous improvement and to ensure that the system continues to comply with regulations and consciously drives the adoption rate to hit at least 90% of government departments and agencies.

“A favourable regulatory environment will encourage more banks and third-party providers to participate in open banking initiatives, leading to growth in the UK market and positioning the nation as industry leaders.”

Continue Reading

Business

Advancing green mobility for a sustainable future

Accelerating decarbonisation, the transition to SDVs and reshaping urban ecosystems, are helping revolutionise the global automotive industry

By Amit Chadha, CEO & Managing Director, L&T Technology Services

The world is changing. There is an urgent need for a transition toward sustainable practices to combat the threat of climate change. As global temperatures rise and weather patterns evolve, achieving net-zero emissions by 2050 could still help prevent irreversible damage to our planet.

With global carbon emission levels continuing to rise at an accelerated rate, there is a growing momentum toward addressing the scenario on war footing. As the most visible source of emissions, the automotive industry, and, consequently, the future of mobility, is in focus. By helping accelerate decarbonisation, reshape evolving urban ecosystems, and redefine the global automotive industry – we can help reverse the trend and preserve our shared future.

Green mobility has emerged as a major enabler in this direction. Leading stakeholders are becoming increasingly invested in developing a deeper understanding of the multifaceted realm of green mobility and its potential to shape a sustainable future.

Accelerating decarbonisation: A global mandate

Decarbonising the transportation sector is crucial to mitigate the harmful effects of climate change. Fossil fuel-based vehicles are responsible for a substantial portion of carbon dioxide emissions, exacerbating the greenhouse effect. To accelerate decarbonisation, governments and businesses today need to prioritise the adoption of clean, renewable energy sources, such as electricity and hydrogen, for powering vehicles and other modes of public transportation.

Automakers, recovering from the impact of the pandemic and global supply chain disruptions, are therefore exploring new avenues to meet the rising demand for electric mobility. Electric vehicles (EVs), by eliminating the need for fossil fuel-powered engines, play a vital role in improving overall air quality and have emerged as a promising solution for reducing carbon emission levels. They are capable of meeting the diverse needs of all kinds of drivers and offer affordable mobility and maintenance options. Recent advancements in battery technology, including the growing availability of charging infrastructure and incentives for adoption, have led to a significant rise in the EVs popularity.

However, to achieve widespread adoption of electric vehicles, there is a need to address key issues such as battery disposal, supply chain sustainability, and equitable access to EV technology.

Reshaping urban ecosystems: Driving the frontiers of change

Urban areas are central to the momentum around green mobility transformation. As growing global populations gravitate towards cities – congestion, pollution, and limited availability of green spaces have emerged as major challenges. As a result, cities must increasingly reinvent themselves to promote sustainable mobility and improve the quality of life for their residents.

Smart technologies and vertical green systems can contribute to a reduction in the energy demands of buildings by providing shade and insulation, mitigating urban heat islands, and cooling down public spaces. They also enable carbon sequestration, a reduction in pollution levels, and improvements in biodiversity.

Implementing efficient transportation systems, such as buses and trains powered by clean energy, can further reduce individual vehicle usage, traffic congestion, and emissions. Pedestrian-friendly infrastructures, cycling lanes, and micro-mobility solutions like e-scooters and bike-sharing programs can further help promote eco-friendly transportation choices. At a macro-infra level, smart city technologies and data-driven urban planning practices are helping optimise traffic flow, reduce idling times, and minimise fuel consumption.

Integrating green mobility into urban ecosystems is therefore a win-win proposition – fostering cleaner air, enhanced mobility options, and healthier communities.

From a public health perspective, improved air quality can drive a decline in respiratory and cardiovascular diseases linked to air pollution. Healthier citizens translate to a more productive workforce and reduced healthcare costs, further strengthening the growing impetus for vehicle electrification. The shift towards vehicle electrification offers significant economic benefits, including greater job creation, enhanced research and development, and greater investments in sustainable innovations. A consequent reduction in the demand for fossil fuels, scarce in terms of availability and mostly imported, in turn, helps enhance energy security and stabilise fuel prices.

Software Defined Vehicles: Pioneering the change

The global automotive industry is at the core of driving the emerging frontiers of green mobility. Traditional automakers and new entrants are racing to produce eco-friendly vehicles, and this competitive spirit, in turn, is transforming the industry landscape.

Automakers worldwide need to embrace sustainable practices by reducing their carbon footprint during the production process and implementing circular economy principles. Moreover, investing in research and development of alternative materials and manufacturing processes can lead to lighter, more energy-efficient vehicles. The rise of autonomous vehicles presents an opportunity to optimise transportation networks, enhance traffic flow, and reduce accidents. Leveraging this technology, in combination with electric and shared mobility solutions, can lead to a more sustainable and efficient future for transportation.

Software would play a key role in this direction, delivering a streamlined passenger and driver experience paradigm while ensuring conformity with the evolving regulatory standards. With Software Defined Vehicles (SDVs) increasingly constituting a focus area for major automakers worldwide, the future would witness a greater demand for digital engineering services to unlock new value streams.

The importance of ecosystem partnerships

Automotive industry stakeholders are already working with ER&D partners who can deliver across the value chain and understand each of the key parameters in the EV/SDV ecosystem. However, approaching separate vendors for product conceptualisation, design and development, testing, maintenance, manufacturing and after-sales support can increase costs and complexities.

An ER&D partner, equipped with multi-industry expertise, digital engineering capabilities, and a co-innovation commitment, can help drive transformation initiatives for transportation enterprises, overcoming technology constraints with cross-vertical learnings. Leveraging global delivery capabilities, the partner can also provide computing models that consume less energy, boost performance, and optimise data-led algorithms. In addition, they can enable scalable software stacks that leverage sensors and physical components to provide the safety and performance that electric vehicles need.

ER&D companies are also increasingly being called upon to help redefine focus areas with software, ensuring third-party integration, driving feature deployment, enabling CloudOps and fast over-the-air updates. The rising complexities within the connected car landscape further call for adopting software-defined designs that can overcome multi-layered challenges – ranging from development to subsequent deployment, maintenance, and updates.

A multi-stakeholder approach

Achieving the goal of green mobility demands collaboration among various stakeholders. Governments play a crucial role in enacting policies and regulations that incentivise the adoption of sustainable practices and technologies. Subsidies for EVs, emission standards, and urban planning regulations are some of the ways governments can drive the transition towards greener mobility.

Private sector involvement is equally critical. Corporate sustainability initiatives, investment in research and development, and partnerships for innovative mobility solutions can accelerate the transformation. Additionally, consumer awareness and support for eco-friendly practices are essential in shaping market demands and influencing business decisions.

Advancing green mobility is a pivotal step towards a sustainable future. By accelerating decarbonisation, embracing the transition to SDvs, reshaping urban ecosystems, and revolutionsing the automotive industry, this can combat climate change on a significant battleground. The collective efforts of governments, industries, and individuals are crucial in driving this transformation.

Embracing green mobility is therefore not just about reducing emissions, but rather, about fostering a healthier, cleaner, and more resilient world. It is about our common future –striving together toward a prosperous, inclusive, and sustainable tomorrow.

Continue Reading

Business

How Turning Your Core Data into a Product Drives Business Impact

By Venki Subramanian, SVP of Product Management at Reltio

Data drives efficiencies, improves customer experience, enables companies to identify and manage risks, and helps everyone from human resources to sales make informed decisions. It is the lifeblood of most organisations today. Sometime during the last few years, however, organisations turned a corner from embracing data to fearing it as the volume spiralled out of control. By 2025, for example, it is estimated that the world will produce 463 exabytes of data daily compared to 3 exabytes a decade ago.

Too much enterprise data is locked up, inaccessible, and tucked away inside monolithic, centralised data lakes, lake houses, and warehouses. Since almost every aspect of a business relies on data to make decisions, accessing high-quality data promptly and consistently is crucial for success. But finding it and putting it to use is often easier said than done.

That’s why many organisations are turning to “distributed data” and creating “data products” to solve these challenges, especially for core data, which is any business’s most valuable data asset. Core data or master data refers to the foundational datasets that are used by most business processes and fall into four major categories – organisations, people (individuals), locations, and products. A data product is a reusable dataset used by analysts or business users for specific needs. Most organisations are undergoing massive digital and cloud transformations. Putting high-quality core data at the centre of these transformations—and treating it as a product can yield a significant return on investment.

The Inefficiency of Monolithic Data Architectures

Customer data is one example of core or master data that firms rely on to generate outstanding customer experiences and accelerate growth by providing better products and services to consumers. However, leveraging core customer data becomes extremely challenging without timely, efficient access. The data is often trapped inside monolithic, centralised data storage systems. This can result in incomplete, inaccurate, or duplicative information. Once hailed as the saviour to the data storage and management challenge, monolithic systems escalate these problems as the volume of data expands and the urgent need for making data-driven decisions rises.

The traditional approaches for addressing data challenges entail extracting the data from the system of records and moving it to different data platforms, such as operational data stores, data lakes, or data warehouses, before generating use case-specific views or data sets. In addition, because of the creation of use case-specific data sets that are subsequently exploited by use case-specific technologies, the overall inefficiency of this process increases.

One inefficiency arises from the complexity of such a landscape, which involves the movement of data from many sources to various data platforms, the creation of use case-specific data sets, and the use of multiple technologies for consumption. Core data for each domain, such as customer, is duplicated and reworked or repackaged for almost every use case instead of producing a consistent representation of the data used across various use cases and consumption models – analytical, operational, and real-time.

There’s also a disconnect between data ownership and the subject matter experts that need it for decision-making. Data stewards and scientists understand how to access data, move it around and create models. But they’re often unfamiliar with the specific use cases in the business. In other words, they’re experts in data modelling, not finance, human resources, sales, product management, or marketing. They’re not domain experts and may not understand the information needed for specific use cases, leading to frustration and data going unused. It’s estimated, for example, that 20% or fewer of data models created by data scientists are deployed.

Distributed Data Architecture – An Elegant Solution to a Messy Problem

The broken promises of monolithic, centralised data storage have led to the emergence of a new approach called “distributed” data architectures, such as data fabric and data mesh. A data mesh can create a pipeline of domain-specific data sets, including core data, and deliver it promptly from its source to consuming systems, subject matter experts, and end users.

These data architectures have arisen as a viable solution for the issues created by inaccessible data locked away in siloed systems or rigid monolithic data architectures of the past. Data fabric decentralises the management and governance of data sets. It follows four core principles – domain ownership of data, treating data as a product and applying product principles to data, enabling a self-serve data infrastructure, and ensuring federated governance. These help data product owners create data products based on the needs of various data consumers and for data consumers to learn what data products are available and how to access and use these. Data quality, observability, and self-service capabilities for discovering data and metadata are built into these data products.

The rise of the concept of data products is helpful for analytics/artificial intelligence, and general business uses. The concept for either case is the same – the dataset can be reused without a major investment in time or resources. It can dramatically reduce the amount of time spent finding and fixing data. Data products can also be updated regularly, keeping them fresh and relevant. Some legacy companies have reported increased revenues or cost savings of over $100 million.

Trusted, Mastered Data as a Product

Data product owners have to create data products for core data to enable its activation for key initiatives and support various consumption models in a self-serve manner. The typical pattern that all these data pipelines enable can be summarised into the following three stages – collect, unify, and activate.

The process starts with identifying the core data sets – data domains like customer or product – and defining a unified data model for these. Then, data product owners need to identify the first-party data sources and the critical third-party data sets used to enrich the data. This data is assembled, unified, enriched, and provided to various consumers via APIs so that the data can be activated for various initiatives. Product principles such as the ability to consume these data products in a self-service manner, customise the base product for various usage scenarios, and deliver regular enhancements to the data are built into such data products.

Data product owners can use this framework to map out key company initiatives, identify the most critical data domains, identify the features (data attributes, relationships, etc.) and the sources of data – first and third party that needs to be assembled – to create a roadmap of data products and align them to business impact and value delivered.

With data coming from potentially hundreds of applications and the constantly evolving requirements of data consumers, poor quality data and slow and rigid architecture can cost companies in many ways, from lost business opportunities to regulatory fines to reputational risk from poor customer experience. That’s why organisations of all sizes and types need a modern, cloud-based master data management approach that can enable the creation of core data as products. A cloud-based MDM can reconcile data from hundreds of first and third-party sources and create a single trusted source of truth for an entire organisation. Treating core data as a product can help businesses drive value by treating it as a strategic asset and unlocking its immense potential to drive business impact.

Continue Reading

Copyright © 2021 Futures Parity.